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Abstract

This is a Part III essay aiming to discuss the contruction of quantum error-correcting
codes through the use of the theory of algebraic function fields, which produces codes
with asymptotically good parameters. This exposition emphasises constructibility and
several applications of the main theorem (theorem 6.2) are given. Prerequisites are the
first 12 lectures of the Part III course Quantum Information Theory [16] or chapter 7
of Preskill’s Lecture Notes [15], and the first two chapters of Stichtenoth’s Algebraic
Function Fields and Codes [19].
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Chapter 1

Introduction

As of today, scientists widely speculate that quantum computers could offer more com-
putational power than conventional computers are able to. But due to the delicate
nature of quantum quantities, the introduction of error during computation seems in-
evitable. Therefore, protections of information either by encoding or other methods
were introduced. This essay aims to discuss the application of algebraic geometry on
quantum error-correcting codes. The motivation behind is the potential error-correcting
power of this method of construction. For instance, quantum algebraic-geometric codes
are the only known quantum error-correcting codes that are asymptotically good, a no-
tion which will be explained later.

The essay is organised in eight chapters. The next chapter offers a brief review
on general coding theory in both classical and quantum cases. Chapter three investi-
gates the stabilizer formalism, which corresponds to a very large subset of all known
quantum error-correcting codes. Chapter four discusses the Calderbank-Shor-Steane
construction of quantum codes, which makes use of the self-duality property of classical
codes to produce quantum codes. Chapter five serves as a review and a quick reference
guide on the theory of algebraic-geometric codes. Chapter six describes how algebraic
geometry is used to construct asymptotically good quantum codes. The machinery de-
veloped is then applied to some specific algebraic function fields in chapter seven.

To make the exposition more transparent, all algorithms, definitions, examples and
remarks will end with the symbol ‘A’ while all proofs will end with the symbol ‘¢’
throughout the essay.



Chapter 2

Review on coding theory

2.1 Review on classical coding theory

In this section, we will review some important notions in classical coding theory.

Let G'F, denote the finite field with ¢ elements. We consider the n-dimensional
vector space GF}'.

Definition 2.1 For a = (ay,...,a,) and b = (by,...,b,) € GF}, let
d(a,b) = #{i | a; # b;}.
The weight of an element in GF' is defined as
wt(a) :=d(a,0) = #{i | a; # 0}.
A

Definition 2.2 A code C' is a linear subspace of GF}'; the elements of C' are called
codewords. We call n the length of C' and denote dimC' by k. An [n, k] code is a code of
length n and dimension k. The minimum distance d(C') is defined to be

d(C) := min{d(a,b) | a,b € C and a # b} = min{wt(c) | 0 # ¢ € C}.
We refer to such a code C' as an [n, k, d| code. A

Definition 2.3 Let C be an [n, k] code over GF}'. A generator matriz G of C'isa kxn
matrix whose rows are a basis of C'. A

Definition 2.4 If ¢ C GF}' is a code, then

Cti={ueGF}|> uc; =0, Vee C}

i=1

is called the dual of C. YA



Definition 2.5 A generator matrix H of C* is said to be a parity-check matriz for C.

A

Note that Hu! = 0 for all u € C' where u! is the transpose of w.

2.2 Review on quantum coding theory

So much for classical coding theory, we will now introduce some important elements in
the theory of quantum error-correcting code. See [15] for the physical significance of the
statements in this section.

Let C? be a 2-dimensional complex Hilbert space. An element of C? is called a
qubit. The space (C?)®" is the space of quantum words of length n.

Definition 2.6 A quantum code @ is a K-dimensional linear subspace of (C?)®". We
refer to @ as an ((n, K)) quantum code. Note the double brackets used to distinguish
quantum codes from classical codes. A

Definition 2.7 An error is a linear operator E acting on (C?)®™. A

Definition 2.8 We define the support SuppE in the following way. If E can be written
as I; ® E', where I; is the identity operator acting on the i-th tensor component and
E’ acts on other tensor components only, then we say i € SuppE. The weight of E is
defined to be

wt(E) = #SuppE.

A

Definition 2.9 A quantum code (@ is called d-error correcting if for all errors E, F' with
wt(E), wt(F) < d and for all pair of vectors u,v € Q,

(F(v) | E(u)) = cprv|u),

where cg r is a complex number depending only on E and F and ( | ) is the standard
Hermitian inner product. Furthermore, if cpp is 0 unless £ = F, then we say the
quantum code is nondegenerate.

Similar to the classical case, we will refer to @ as an ((n, K,d)) quantum code. A

For long quantum codes to be useful, we need to know their asymptotic behaviour.
Letting kg = log, Kg, we set

ko
R 2.1
Q n’ (2.1)
dq
5, — 9.2
Q n’
R(6) = limsup Ry, (2.3)



where the limit is taken over all quantum codes with dg > . The best known noncon-
structive lower bound (see lecture 9 of [16]) on R(0) is

R(0) > 1—dlog,3 — H(9), (2.4)
where H(z) = —zlogyx — (1 — x)log,(1 — ) is the binary entropy function.

2.3 From non-binary to binary codes

In order to utilize the potential of algebraic construction, one needs to consider algebraic
functions over finite fields other then G'F5,. This section is thus aimed to estimate the
parameters of the code obtained by binary expanding a code over G Fym.

Definition 2.10 The trace of a € G Fym is defined by

m—1

Tr(a)= > a®.

7=

A
Theorem 2.11 For all natural number m, there exists a self-dual basis {ui, ..., uy} of
GFym over GFy, i.e.,
T?”(uin> = 6@]
PROOF. See [12]. &

The following theorem is due to T. Kasami and S. Lin [11].

Theorem 2.12 Let C be a code over GFym, C D C* and u;,i = {1,...,m} be a self-
dual basis of GFom over GF,. Let D and E be codes obtained by the symbolwise binary
expansion of codes C' and C* in the basis u;. Then (1) D D E and (2) E = D+,

PROOF. (1) The statement is obvious since D, E are obtained from C, C* by binary
expansion.

(2) Let a = (a1,...,a,) € C and b= (by,...,b,) € C*. Let
a; = Zal(j)ui and b; = Zbgj)ui.
i=1 i=1
Then

0 = iajbj:Tr(Zajbj) (25)



= Tr(d_ > az(j)b,(cj)uiuk) (2.6)
j=1ik=1
= > > agj)b,(cj)Tr(uiuk) (2.7)
J=1ik=1
= 33 a7y (2.8)

<
Il
-
-
I
—

So D+ D E. Now as the dimensions of D and E are complementary, we have E = D*.

¢

Remark 2.13 It is obvious that if we start with a triple C' D C' 2D C* of codes over
G Fym, the binary expansion again gives us a triple D’ D D D D+ of binary codes. A



Chapter 3

Stabilizer formalism and encoding
procedure

3.1 Stabilizer formalism

Definition 3.1 For (a | b), (u | v) € {0,1}*" we define a symplectic scalar product ® on
{0,1}*" by
(a|b)® (u|v)=a-v@Bu-b,

where & denotes mod-2 addition. A
Definition 3.2 A stabilizer matrix
H=(Hx | Hz)
is a (n — k) x 2n matrix of rank (n — k) such that for any rows (a | b), (u | v) in H,
(a|b)®(u|v)=0

and

A

Definition 3.3 Let S be the vector space generated by the rows of H, we define the
weight of an element (a | b) € S as

wt(a | b) = (a; V by),

(2

where a; V b; = max{a;, b;}. A



Theorem 3.4 For any stabilizer matrix H, and S the vector space generated by the rows
of H. If d is an integer such that for all (a | b) € {0,1}*™ with weight = ;(a; Vb;) < d,
either (a | b) lies in S or lies outside of the ®-orthogonal space Sz. Then there is
a quantum code Q) associated to H with length n and dimension 2% which is d-error
correcting.

Furthermore, if for all vectors (a | b) with wt(a | b) < d, they all lie outside of SZ,
then the quantum code is nondegenerate.

PROOF. See lecture 11 of [16] or chapter 7 of [15]. &

Definition 3.5 Given a stabilitzer matrix H = (Hx | Hz) with (n — k) rows, we refer
to the corresponding quantum code @ as an [[n, k, d]] if @ is d-error correcting. AN

3.2 Converting stabilizer matrix into standard form

In this following two sections, we will investigate the procedure for encoding. For more
detailed treatment, we refer the readers to [4, 7, 14].

Given a stabilizer matrix H, by Gaussian elimination (which correspond to mul-
tiplying two generators and switching qubits enumerations and hence do not change the
corresponding quantum code), we can transform H into the following form:

r n—r r o n—r
ASNAN AN

r{ ( I A ‘ B C )
n—-k-r{\ 0 01 D FE
where I denotes the r x r identity matrix and r is the rank of Hy.

Then, by doing Gaussian elimination on F, we can have H transformed to:

r n—k—r—s k+s r n—k—r—s k+s
AN AN AN AN AN A
7‘{ I Al A2 B Cl 02
n—k—r—s{ ( 0 0 0 Dy I E, )
SN0 o o0olDy, 0 o0

In order for the first » rows of Hx to be ®-orthogonal to the last s rows of H;, we
must have Dy = 0, which implies s = 0. Also, by using the last n — k — r rows, C
can be eliminated all together. Therefore, we can always put H into the following form
which we call the standard form:

{ A’%‘% BARSN
T ] 1 2 B O O
n—k—r{ ( o 0 0!D I E ) (3.1)

We now define two matrices, X and Z, which will enable us to find a basis for Q
with easy encoding procedure.



Definition 3.6 Given a stabilizer matrix H in standard form as above, the XM matrix
and Z™-matrix are defined to be

r n—k-—r T n—k—r
X*"=(0 FE I |C 0 0)
r n—k-r k f}"\ n—k—r ,.f\
- A~ A= —~~
ZH=(C0 "0 "0 | A, "0 I).
We denote the i-th row of X” and Z" by X/* and Z]* respectively. A

Proposition 3.7 Given a stabilizer matriz 'H.

(a) The rows in Z" are linearly independent and ®-orthogonal with the rows in H.

(b) The rows of X™ are linearly independent and ®-orthogonal with the rows in H.
Moreover, XJH is ®-orthogonal with all the Z* except Z]H.

PROOF. Straight forward verification. &

Because of the previous result, we can define a basis for the quantum code ) asso-
ciated to ‘H to be the states with stabilizer

(Huy oo Hogs (1) 27, (=)™ 2

where (z1,...,21) € {0, 1}

3.3 Quantum circuit for encoding

In order to encode any quantum message, we first need the following proposition.

Proposition 3.8 Given a stabilizer matric H = (Hx | Hz) in standard form (3.1).
For any i-th row of H, there is a vector U' = (ul, | ul) such that U is ®-orthogonal to
all Z™ and is ®-orthogonal to all the rows in H except the i-th row.

PrOOF. We take
0 0 O‘I 0 O)

07 01000
and let U* be the i-th row of U. The claim will then be easily verified. &

0=

To encode the |0)®* state, we start with the state |0)®" and measure each of the
observables Hy, ..., Hu 1, Z1%, ..., ZI* in turn. We then will have a state stabilized by
(£Hy, ..., T H, g, £21 . £Z]) where the plus or minus signs depend on the mea-
surement outcomes. Then by applying the set of operators { X7, ..., X}*} and those
found by proposition 3.8, we can change the state to an arbitrary encodes basis state

|IL‘1, s 7xk>encoded~



Figure 3.1: Quantum circuit for measuring a single qubit operator M with eigenvalues +1.

We now consider the network that performs the measurement. We first note that to
do a measurement on a operator M with eigenvalues +1, the quantum circuit in figure
3.1 may be used:

Then, the following example should suffice to demonstrate how encoding procedure
is done in general.

Example 3.9 We consider the five-qubit code which has stabilizer matrix

0

— o O O
—_— O
—_ O = O
—_ o O

1
1
0
1

O = O

1
1
1
1

o O O =
o O = O

0
1
0

Hence, we have

X = (00001 | 10010) , Z = (00000 | 11111).

Therefore, to measure the observables Hy, ..., Hyn_, Z1%, ..., ZIt, the circuit in figure
3.2 may be used.

After the measurement, we may then apply X and those operators found in propo-
sition 3.8 to convert the quantum state into any encoded state as desired.

A

10



Figure 3.2: Quantum circuit for measuring the generators and Z of the 5-qubit code.

11



Chapter 4

Calderbank-Shor-Steane
construction

4.1 CSS construction

Definition 4.1 Let C be a classical [n, k,d] code containing its dual C*+ and let H be
the parity-check matrix of C'. Then the CSS code corresponding to C' is the quantum
code associated to the stabilizer matrix

(4 3)

By construction, it is trivial that H is indeed a stabilizer matrix.

Theorem 4.2 Let C be a classical [n, k,d] code containing its dual C+. Then the cor-
responding CSS code is a [[n,2k —n,d]] quantum code.

PROOF. The theorem follows easily from theorem 3.4 and the construction of H. {

4.2 Enlargement of CSS quantum codes

Definition 4.3 The i-th generalized distance d; of a linear code C' is the minimum size
of the support of a i-th dimensional subcode of C. A

Note that d; is the minimum distance of the code and ds is the minimum weight of
the bitwise OR of two different nonzero codewords, i.e., do = min{>;(a; Vb;) | a,b € C}.
We also have the following inequality for d; and ds.

Proposition 4.4 For any linear code C with parameters [n, k, d|,

3d,
< .

12



ProoOF. Take any two distinct element u,v € C such that the corresponding ds is
achieved. Assume wt(u) = d; = d and the general case can then be proved by induction.
By rearranging terms, we can assume the first d entries of u are 1's. If dy < [21], either
wt(v) < d or wt(u +v) < d, a contradiction as v,u +v € C. O

To construct better quantum codes, we need the enlarged CSS construction which
was first invented by Steane [17]. He proved that the quantum code constructed has
parameter [[n, k+ k' —n, min{d, [%ﬂ }]. Cohen, Encheva and Litsyn later improved the
minimal distance to min{d, d,} [5]. We will give an alternative proof to the theorem
based on the symplectic geometry formalism introduced earlier.

Theorem 4.5 Given a classical binary error correcting code C = [n,k,d] which con-
tains its dual, C+ C C, and which can be enlarged to C' = [n, k' > k + 1,d'], a nonde-
generate quantum code of parameters [[n, k + k' — n,min{d, dy}|] can be constructed.

PROOF. Let H' be the parity-check matrix of C' and H' and B together check C.
Consider

AB B
H=| 1 o |,
0 H

where A is a (k' — k) x (k' — k) matrix such that AB, (A+ I)B and B generate the
same set. One possible choice is

0100...0
0010...0
A 0001...0
0000...1
1100...0

By construction, u, v rows in H’ implies
wwelCt=ueCtcC' =u-v=0.
Similar calculations can show H is indeed a stabilizer matrix.
We now let S be the vector space generated by the rows of H. If (a | 8) € {0,1}2N

is such that
(alB)ow|v)=a-v&u-=0,Y(u|v)€S.

Then we consider two cases: (1) either « or 3 is 0; (2) they are both nonzero.

(1) W.lo.g., take (3 to be zero, then a € C, so wt(«) > d.

(2) If they are both nonzero, we have a, 8 € C'. If « = 3, then by the requirement of
A, a=(isin C and so wt(a | B) > d. If a # 3, wt(a | §) > di by definition.

Now, as all the vectors with weights under min{d, dy} are outside of S3, the corre-
sponding quantum code is nondegenerate. %

13



Chapter 5

Algebraic function fields and codes

This chapters serves as a reference on definitions and theorems needed for later devel-
opment. All proofs of statements can be found in [19].

5.1 Review on algebraic function fields

Definition 5.1 An algebraic function field F'/K of one variable over K is an extension
field F' O K such that F is a finite algebraic extension of K (z) for some element z € F
which is transcendental over K. A

Definition 5.2 A wvaluation ring of the function field F'//K is a ring O O F such that:
(1) KCOCPF,and (2) forany z€ F, z€ O or 27! € O. JAN

Proposition 5.3 Let O be a valuation ring of the function field F/K. Then (a) O is
a local ring, i.e., O has a unique mazimal ideal P.

(b) P is a principal ideal.

(¢) If P =tO then any 0 # z € F has a unique representation of the form z = t"u for
somen € Z, u € O*.

PROOF. See proposition I.1.5 and theorem 1.1.6 in [19]. &

Definition 5.4 (a) A place P of the function field F'//K is the maximal ideal of some
valuation ring O of F'/K. Any element ¢ € P such that P = tO is called a prime element
of P.

(b) Pr:={P | P is a place of F/K}.

(c) To any place P € Pp we associate a function vp : F — Z U {cc} by defining
vp(0) := 0o and vp(z) :=n when z = t"u with ¢t a prime element of P. A

Definition 5.5 Let P be a place of F/K and Op be its valuation ring. For z € Op
we define z(P) € Op to be the residue class of x modulo P, for + € F\Op we define
z(P) := oo. We note that this symbol oo is different from that used in the previous
definition but confusion should not arise. A

14



Proposition 5.6 In a function field F/K, for any element 0 # x € F, the set {P €
Pr | vp(z) # 0} is finite.

PROOF. See corollary 1.3.4 in [19]. &

Definition 5.7 The free abelian group which is generated by the places of F/K is
denoted by Dp, the divisor group of F//K. The element of Dp are called divisors of
F/K. In other words, a divisor is a formal sum

D = Z npP with np € Z, almost all np = 0.

PePr
A
Definition 5.8 (z) = Y pcp, vp(x)P. A
Remark 5.9 (z) is in Dy by proposition 5.6. A
Definition 5.10 For a divisor A € Dr we set
L(A):={re F|(z) = -A; U{0}.
The dimension of the vector space L(A) over K is denoted by dim(A). A
Definition 5.11 An adele of F'//K is a mapping
o { Pr — F
P — ap,
such that o € Op for almost all P € Py.
Ap = {a | ais an adele of F/K}
is called the adele space of F//K. It is also a vector space over K. A

Definition 5.12 A Weil differential of F'/K is a K-linear map w : Ap — K vanishing
on Ap(A) + F for some divisor A € Dp. We call

Q= {w | wis a Weil differential of F/K}
the module of Weil differentials of F//K. For A € Dp let
Q(A) := {w | w vanishes on Ap(A) + F'}.
Also, for w # 0, let
M (w) :=={A € Dp | w vanishes on Ap(A) + F'}.

15



Theorem 5.13 Let 0 # w € Q. Then there is a uniquely determined divisor W € M (w)
such that A < W for any A € M(w).

PRrOOF. Theorem 1.5.10 in [19]. &
Definition 5.14 The divisor (w) of a Weil differential w # 0 is the uniquely determined
divisor of F'/K satisfying
(1) w vanishes on Ap((w)) + F.

(2) If w vanishes on Ap(A) + F, then A < (w).
A divisor W is called a canonical divisor of F/K if W = (w) for some w € Q. A

Theorem 5.15 Let A € D and W = (w) a canonical divisor of F/K. Then L(W — A)
and Q(A) are isomorphic as K-vector space. In particular,

dim(W — A) = dimA — degA + g — 1.
PROOF. See theorem 1.5.14 in [19]. o
Definition 5.16 The genus g of F//K is defined by

g = max{degA —dimA+1| A € Dr}.

Theorem 5.17 The genus g of F/K is a non-negative integer.

PROOF. See remark 1.4.16 in [19]. &
Theorem 5.18 (Riemann-Roch Theorem) Let W be a canonical divisor of F/K. Then,
for any A € Dp,

dimA = degA+ 1 — g+ dim(W — A).

PROOF. See theorem 1.5.15 in [19]. &

Corollary 5.19 For a canonical divisor W, we have
degW = 2g — 2 and dimW = g.

PRrROOF. To show dimW = g, take A = 0. To show degWW = 2g—2, take A =W. {
Theorem 5.20 If A is a divisor of F/K of degree > 2g — 1, then

dimA = degA+1—g.

PROOF. See theorem 1.5.17 in [19]. O

16



Definition 5.21 Let P € Pp.
(a) For x € F, let tp(z) € Ar be the adele whose P-component is z, and all other
components are 0.
(b) For a Weil differential w € Q, define its local component wp : F' — K by
wp(z) == w(p(x)).
A
Proposition 5.22 Let P € Ppg be a place of degree one and w € Q. Let (w) =
> ap P be such that ap, > —1 for P, = P.
(a) wp(l) =0« ap > 0.
(b) For x € F with vp(x) > 0,
wp(z) = z(P)wp(l).
PROOF. See proofs of theorems I1.2.7 and I1.2.8 in [19]. &
Theorem 5.23 Let w € 2 and a = (ap) € Ap. Then wp(ap) # 0 for at most finitely

many places P, and
w(a) = > wplap).
PePp

PROOF. See proposition 1.7.2 in [19]. O

5.2 Algebraic geometric codes

For this section, we will always have the following notations:

F/GF, is an algebraic function fields of genus g;

Py, ..., P, are pairwise distinct places of F//GF, of degree 1;
D:P1++Pn,

G is a divisor of F//GF, such that suppG N suppD = 0.

Definition 5.24 The algebraic geometric codes Cp(D,G) and Cq(D, G) associated with
the divisors D and G are defined by

Ce(D,G) = {(x(P),...,x(P) |z € L(G)} C G (5.1)
Ca(D,G) = {(wp(1),...,wp (1)) |w € Qp(G — D)} C GE. (5.2)
A

Theorem 5.25 Cqo(D,G) = Cr(D,G)*.
PROOF. See theorem I1.2.8 in [19]. &

Theorem 5.26 Let 29 — 2 < degG < n. Then Cq(D,G) is an [n,k,d] code with
parameters
k=n+g—1—degG , d>degG — (29 — 2).

PROOF. See theorem I1.2.7 in [19]. &

17



Chapter 6

Quantum algebraic geometric codes

The following presentation is based on the paper Asymptotically Good Quantum Codes
by A. Ashiknmin, S. Litsyn and M. A. Tsfasman [2].

Definition 6.1 Let 6 € (GF;)". For a code C C GF}', we define
i=1

A

Theorem 6.2 If F' is an algebraic function field over GF, of genus g with at least n' >
3g places of degree 1. Then for anyn < n'—g, and for any a = 2g—1,... , min{n,n'/2+
g/2 —1}, there exists an [n,k =n+g—1—a,d > a—2g+2|-code C such that C 2 Cy
for some 0 € (GF;)".

Moreover, if ¢ = 2™, m € N, there exists such a code with C D C*.

PROOF. Let G be a positive divisor of degree a, i.e., G > (0), and P’ = {Py,..., Py}
is the set of places in F of degree 1 such that SuppG NP’ = 0. Set

D =P +...,+P, € Dp.

Now let F be an effective divisor of degree n’ + g — 2 — 2a, which implies that
a <n'/2+4 g/2 — 1. Define A to be D' —2G — E, then for a canonical divisor W, we
have deg(W + A) = g be corollary 5.19. By theorem 5.15,

dimQ(—A) = dim(W + A).
By Riemann-Roch Theorem (theorem 5.18),

dim(W +A)=g+1—g+dim(W - A) > 1.

18



Therefore, 3 nonzero wy € (—A).

Consider the map
Q(—-A) — Cq(D', D' —A) (6.1)
W = (wpl(]')?"':an/(]'))‘ (62>
The kernel is Q(2G + E). Let wop, (1) = 0 for {F;,, ..., B, } = Po. Then
wo €Q2G+E—(D'=> P,))=Q-A+> P).
j=1 =1
As wy # 0, by theorem 5.20, we must have
j=1

ie.,
—2—9g)+m<29—2

which implies m < g.

Let P={P,...,P,} =P\Py. Thenn>n'—g. Put D= Pi+,...,+P, € D, we
have wy € Q(2G + E — D). Define 6 = (wop, (1), ...,wop,(1)).
We consider

C= Cz:<D7G)9L ={r¢€ GFqn | Zeixiyi =0,Vy € Cr(D,G)}.

For z,y € L(G), we have

0 = wo(zy)
= PEZP;Fwop(:vy) (
= gwopi(xy) (6.5)
- gxm)ym)wopiu) (6.:6)
— Y a(P)y(PIE 67)

where (6.3) and (6.5) follow from the fact that w, € Q(2G + F — D) and z,y € L(G);
(6.4) follows from theorem 5.23; (6.6) follows from proposition 5.22.

Therefore, C 2O C(D,G). Also, x € Cf = x € Cr(D,G)t = z € C. Hence,
C 2 Cyf.

19



If ¢ = 2™, any element in GF, is a square. Let §; = n?. Consider the multiplication
map

my: GEr — GE?
r = (Mry, .. D). (6.9

Define C" = m,(C) which will then contain its dual, i.e., C' D C"*.

Now for n > a > 2g — 1, by theorem 5.25 and 5.26, Cz(D,G)* = Cq(D,G) is a
nk=n+g—1—a,d> a—2g+ 2| linear code. The multiplication map mg-1 from
Cqo(D,G) to C is a isomorphism of vector spaces. Hence, C' is a linear code with the
same parameters.

Recalling the restrictions on a, i.e., 29 — 1 < a <n'/2+ g/2 — 1, we have n’ > 3g.
The theorem is then just a restatement of the previous discussion. %

Now, let us define R = k/n and § = d/n and do some analysis on them. First of all,
by the previous theorem, we have for n < n’—gand 29—1 < a < min{n,n’/2+g/2—1},

1
R = 1—%, (6.10)
29 +2
5= 4Tt (6.11)
n

From the equations, we see that R rises with the incease of n and with the decrease of
a, while ¢ rises with the increase of a and with the decrease of n. Also, it is easily seen
that R+0 =1 — g/n. Hence, for fixed ¢, we should choose the maximum n available to
maximize R. Therefore, we will always choose n = n’ — g from now on.

Applying theorem 6.2 to a families of algebraic function fields F’s over GFy, ¢ a
square, such that
N(F)

lim sup =./q—1,
9(F) va

g—o

where N (F) is the number of places of degree one in F' and g(F’) is the genus of F' (for
existence of such families, see [21, 6]), we get the following corollary:

Corollary 6.3 Let g be an even power of a prime. Then for any

c 2 1 n 1
a S — — —
Vi—22 \Jg—2
there exists families of codes with asymptotic parameters
1
R =1—-a+——— 6.12
s (6.12)
2
0 > oa-— ,
Vi —2
with the property C' 2 Cy- for some 0 € (GFy)".
It q is an even power of 2, there exists such codes with the property C D C*.

(6.13)
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PrOOF. We have taken n =n’ — g, so

_ -1
p - n-atg (6.14)
n
g
- 1- 6.15
a—i—n/_g ( )
1—a+ L (6.16)
= l-a+——, .
V=2

where a will lie in the prescribed range. The rest of the proof can be done by similar
calculations. &

To use the generalized CSS construction, we need a triple ¢’ D C O C+. Therefore,
we take two divisors G' < G, then Cr(D,G") C Cr(D,G) and we have the opposite
inclusion for duals. Taking SuppG' U P = (), wy can then remain the same. Therefore,
we have proved the following:

Corollary 6.4 Let ¢ = 2*™. Then for any pair of real numbers (a, ') such that
2m —2 = -2 2m-2

there exists families of triples of 2°m-ary codes C' D C D C+ with asymptotic parameters

R=1-d+ , 0 >a —

- 2m — 2

2m — 2

R=1—-a+

, 0> a—

2m — 2 - 2m — 2’

o

By using all the machineries developed, we can now construct an asymptotically
good quantum code () and we will state how it can be done in a step by step manner.

Algorithm 6.5 1. Start with a family of algebraic function fields over G Fy2m with
the property that

N(F
tim YD _gm g,
Each algebraic function field will then give us a triple of 22™-ary codes ¢’ D C' D

Cct.

2. Let ¢" and C be an [n/,k',d'] code and an [n,k,d] codes respectively. Binary
expand C and C* with respect to a self-orthogonal basis to get a triple of binary
codes D' D D D D+ with parameters

npr =np = 2mn,
kD’ = ka}/ s k)D = ka},
dp >d , dp =d.
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3. By the generalized CSS construction, each triple give us a quantum stabilizer code
[[2mn, 2m(k + k" — n), > min{d, d;}]]. The corresponding asymptotic parameters

are
Ry = R+R —1 (6.17)

!
dg > %min{é,%} (6.18)

where R, R', 6,8 are the parameters of algebraic geometric G Fym-ary codes.
A

Let us now try to find a dependence between R and dg. Letting v = 2m—172 From

the previous section, we see that for ¢ = 22™ and for any pair of real numbers (a, o)
such that 2y <o/ < a < %—}—7,

Rg = 1—(a+d)+2y (6.19)

1 3
> min{a—2v, (/- 27)). .
dg > 5 min{a — 27 , 2(a 27)} (6.20)

For any fixed dg, in order to maximize Ry, we want o — 2y = %(o/ — 27), ie,
o = Z(a+ ). Hence,

) 4
Ro = 1—-= — 6.21
Q 30+ 37 (6.21)

1
oo > — (o — 2v). 6.22
@ 2 5(a—2) (6.22)
Therefore, for any m > 3 and § < %(% — 3m—5), We get

2 10

RQ =1- om _ 9 — §m5Q (623)

Immediately, we see that the asymptotic parameters of QAG codes are separated
from zero and so they are asymptotically good as claimed.
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Figure 6.1: Nonconstructive bound of equation 2.4 and the bound of equation 6.23.
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Chapter 7

Examples

7.1 Rational function field

Definition 7.1 F' = K(x) where z is transcendental over K is called the rational
function field over K. A

Remark 7.2 F = GF,(z) has genus ¢ = 0 and ¢ + 1 places of degree one which are
{P, | o € K}U{Py}. Moreover, for 0 < degG < n—2, k = 1+degG and d = n—degG.
JAN

Let K = GF, and F = K(z). Following the previous chapter, we let G = a- Py, a €
Nand D = 3 cx arzo Pa With degD = n = g—1. Define E = (n—2—2a)- Py, and impose
the condition that a < n/2 — 1 so that E is positive. We now set A =D —2G — E =
Yaek,az0 Pa—(n—2) Py. If we choose as a basis for £(G) the functions 1, z, ..., 2% then
the geometric Goppa code Cz(D, @) is given by matrix (¥ with ¢ a primitive element
of K. Classically, this code is called Reed-Solomon code. In the quantum case, we found
an element § € Cq(D,2G + E) = Cr(D,2G + E)*. By theorem 6.2, wt(d) = n. We
now consider the image of the multiplication map mg(Cr(D,G)) and its dual is equal
to C" := Cr(D,G)y. We note that the dual code of a code can be easily found by
Gaussian elimination on the generator matrix of the code. Again, by theorem 6.2, we
get the following parameters for C”:

n=q—1,k=q—2—a,d>a+2

Wherelgag%l—l.
Now, we set ¢ = 2™, m € N and we find 7 such that 5 = 6;. Then we set C' = m, (C")
and we get C' D C*+. We formulate the above discussion into the following proposition.

Proposition 7.3 Let F' = GF,(x) where x is transcendental over GF, and ¢ = 2™, we

have for any 1 < a' < a < [(2™ —1)/2 — 1], there exists an [[m(2™ — 1),m(2™ — 3 —
(a+d)),d>min{a+2,3(a + 2)}]] quantum code Q. o
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We note that since the construction is similar to that of the classical Reed-Solomon
codes, we may identify the codes found in proposition 7.3 as the Quantum Reed-Solomon
Codes. We also remark that proposition 7.3 is an improvement of theorem 6 in [10].

We now want to consider another class of QAG codes which is the quantum analog
of the classical BCH codes. Firstly, let n|g — 1 and let ( € GF, be a primitive n-th root
of unity. We consider the rational function field F = GF,(z) and let P, := x — ("' and
D:=P +---+ P, Wealsodefine G:=a-Fy+b- Py with0<ab<n-—2 and
E:=(n—-2-2(a+b))- Py with (a +b) <n/2—1. We note that the generator matrix
of Cr(D,a- Py+b- Py) is given by

DS S
N -
i Cfa+‘(a+b) C72a+'2(a+b) . (gnfl);aJr(aer)

Following previous exposition, we find 5 such that n? = §; where € Cq(D,2G + E)
and consider C' := m, ((ma(Cc(D,G))*) which is a [n,n—(a+b)—1,d > (a+b)+2]-code
containing its dual.

Then by binary expanding and using the Steane’s construction, we get the following
proposition.

Proposition 7.4 Let F = GF,(x) where x is transcendental over GF,, ¢ = 2™ and
n|g—1, we have for any 0 < ¢ < ¢ < n/2—1, there exists an [[mn, m(n—(c+c')—2),d >
min{c + 2, 3(¢ + 2)}]] quantum code Q.

We note that weakly self-dual BCH codes can also be used to construct quantum
codes through Steane’s construction, but their parameters are no better than those
found in the previous proposition. Some more specific discussion on Quantum codes
based on BCH codes can be found in [17, 9, 20].

7.2 Elliptic function field

Definition 7.5 An algebraic function field F'//K (where K is the full constant field of
F)) is said to be an elliptic function field if the following conditions hold:
(1) the genus of F/K is 1;
(2) there exists a divisor A € Dy with degA = 1. A
We consider an elliptic curve € defined by the equation:
v +y = u(z)
where u(x) € GFy[z] is a polynomial of degree 3.
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We now consider the points on £ over GF, with ¢ = 2™. We follow [18] in this
section and define a subset S of £(GF,) to be

S:={aeGF,|(ap,1) € E(GF,),a # 0}.

Let s = #S and d € N be such that 2s —d > 1. B
We now define G := a - Py, and D = Y cg(Pa + P,) where P, := (a,,1) and
P, = (o, 8+ 1,1).
Set [ := |a/2] and I* := |[(a — 3)/2] and define a function f on E by
f(z,2) =[] (= + az).

a€csS
Defining

wi =Ty 0<i<s—1—2

4 dx
wj ::szS_JT ,0<j<a—-10"-2.

They then serve as a basis for Q(D — G) and their residue can be calculated to be

ResPa(xlde) = L; , Resp, (a:lyd%) = o;;y(go;)

where

flay=" T (a+a).

a’eS,a’#a

The image of the following map is then a [n,n — d, > d|am-code with n = 2s.

Res : QD — G) — Co(D,G) C GF} (7.2)
w — (Resp,(w), ..., Resp,(w), Resp, (w), ..., Resp (w)). (7.3)
To find quantum codes, following the previous definition, we define
D' = Y (P.+P,) (7.4)
a€esS
G = a-Py (7.5)
E = (2s—1-—2a)- Px. (7.6)

We then find an element § € Cqo(D’,2G+ E), it can have at most one component = 0.
W.lLo.g., let the first component be zero, we then re-define D := ¥, c¢(P,+ P,)— P, and
find n € GF;~" such that 77 | = 6;,2 <1 < n. We now consider my((mq(Co(D,G))")
which contains its dual by theorem 6.2. The parameters of the quantum code will then
be

/

o= m(2s~ 1), k=m(2s — (a+a)~1), d>minfa, 5 }]

where 1 <a' <a <2s—1.
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7.3 Hermitian function field

Definition 7.6 The Hermitian function field H over GFj2 is defined by the curve

xq+1 4 yq+1 + Zq+1 = 0.

H := GFpg(z,y) with y? +y = 291"
A
Remark 7.7 The genus of H is g = q(q — 1)/2. JAN

We shall show that H has 1+ ¢® points in P?(GF). In fact, if z,y or z = 0, then
w.l.o.g., assume z = 0 and y = 1 and we need to solve the equation 297 = 1 over GFp2
which has ¢ + 1 solutions. Therefore, H has 3(¢ + 1) points with xyz = 0. Otherwise,
take z = 1 and y € GF% such that y?*1 = 1. For each y, there are r + 1 solutions for .
Hence, H has 3(¢ + 1) + (¢ — 2)(¢ + 1)*> = 1 + ¢® points.

Choose a, § € GF, such that a4 + a = 39 = —1, and setting

we can transform
to the equation
!+ v =yt

We now take G = a - Q where Q = (0,1,0) with ¢ — ¢ < a < ¢ and D =
Y pem.pzg P The classical Hermitian code Cz(D,G) is thus a [¢°,a —g+1,> ¢° — a]e-
code. Also, we note that elements v'u? with i > 0,0<j<¢g—1andig+j(¢g+1)<a
form a basis of the space L(a - Q) and so the generator matrix can be found readily.
Again by theorem 6.2, we have the following proposition.

Proposition 7.8 Let H be a Hermitian function field over GFpe and g = 2™, we have
for any ¢* —q < a' < a < @, there exists an [[2m¢>,2m(¢® + ¢* —q—2— (a+ d')),d >
min{a — ¢* + ¢ + 2, 2(a' — ¢* + ¢+ 2)}]] quantum code Q. &

Similar to the case of BCH code, we may consider Hermitian code that is naturally
self-dual. This situation is described by the next theorem.

Theorem 7.9 (a) Forr < s, we have C, C Cy where C,. := Cr(D,r - Q).
(b) C = Coptqp—g—2-r

) If¢*—q—-2<r<¢@+¢—q—2. Thenk=r+1—qlg—1)/2 andd > ¢* — r
where k = dimC,. and d is the minimum distance of C,.
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PROOF. See Propositions VII1.4.2 and VII.4.3 in [19]. O

To construct quantum codes throught the Steane’s method, we want classical codes
C" and C such that C' D C D C*. By theorem 7.9, we thus have the following corollary.

Corollary 7.10 Forr,s € Z such that %(q3+q2 —q—2)<r<s<@+q¢—q—2, we
have C; O C, D C+ where

dimCT:r—l—l—q L, d>¢—r

(g—1)
9

q(q—1)

d> ¢ —s.
5 ,d>q° —s

dimCy=s+1—
¢

We now let ¢ = 2™, m € Z. By binary expanding the finite field GFj2, we have
binary codes D' and D such that

npr = np = 2myq

—1
kD/:2m(s+1—%

dD/:q3—S7 dD:q3—T,

) kp=m(r+1 - 1021,

for 3(*+¢* —q—2) <r <s<q¢*+¢*—q—2. Hence, by theorem 4.5, we have the
following corollary.

Corollary 7.11 Associated to the Hermitian function field H over GFp, we have a
family of quantum codes Q" with parameters

n = 2mg’ (7.7)
k= 2m(s+r+2—q¢"+q) —¢° (7.8)
3
d > minfg’ —r 5(¢" - 5)} (7.9)
where 1(¢* +¢* —q—2) <r <s < ¢ &

We now set a := ¢ +¢*—q—2—rand @’ == ¢®+¢*> — q¢— 2 — s, we get the following
family of codes:

) 3
[2mg® , 2+ —q =2~ (a+d), > min{a— @ +q+25(0 ~ ¢ +q+2)]

Wherqu—q—an/<a§%(q3+q2_q_2)‘

Comparing thre result with proposition 7.8, we see that construction by Ashikhmin,
Litsyn and Tsfasman is more general, but the weakly self-duality of Hermitian code does
manage to improve the lower bound by 2.

28



Chapter 8

Conclusion

So we have succeed in finding some asymptotically good codes, but it seems that we
should be able to do much better than what we have done. For instance, the parameters
of QAG codes are still far from attaining the quantum lower bound in equation 2.4

R(0) > 1—¢logy,3 — H(J).

So as it is guaranteed that there are good codes that are even better than our QAG
codes, why are we wasting time on QAG codes? The answer lies on the fact that the
lower bound is nonconstructive. In other words, those imaginary codes appearing in
the lower bound cannot be constructed in polynomial time in n while the QAG codes
can be. In fact, recalling our three steps in algorithm 6.5, step (1) is polynomially
constructible, see [21], step (2) is polynomially constructible because binary expansion
is, step (3) is also polynomially constructible (c.f. section 3.3). Therefore, our QAG
codes are polynomially constructible.

On the other hand, if we know improvement is possible, what should we go about
in achieving that? First of all, if manipulation of spins (or other quantum quantities)
in higher dimension is possible, we should try to generalise our QAG codes to higher
dimension and it may improve their parameters. For instance, the Gilbert-Varshamov
bound is achieved when ¢ > 49 in the classical case. Secondly, in constructing QAG
codes, we were basically converting classical algebraic-geometric codes to quantum ones
through the Steane’s construction. One may wonder if the theory of algebraic function
fields could be applied directly to the quantum case without recuring to our classical
counter part.

Some research has been done in the first direction [1, 3, 13], but it is still unclear
about how to combine the techniques devised on higher dimensional quantum codes
with the algebraic-geometric constructions. For the second direction, it may require
another quantum leap in ideas of QECC constructions similar to the invention of CSS
construction and the Steane’s improvement on it.
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