Complexity Forum, Warwick University February 6, 2013

Stochastic dynamics of reaction-diffusion systems: An epidemic model case study

Chiu Fan Lee Department of Bioengineering Imperial College London

> Imperial College London

Reaction-diffusion systems are ubiquitous

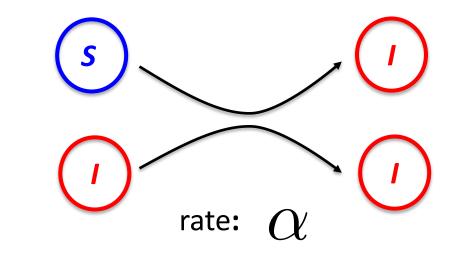
• Extensively used in modelling dynamical processes in physics, chemistry, biology, ecology, etc

• Typical representations:
$$\frac{\mathrm{d}\vec{\phi}}{\mathrm{d}t} = \vec{F}(\vec{\phi}) + \mathbf{D} \cdot \nabla^2 \vec{\phi}$$

- **Problem:** Neglect of inevitable intrinsic noises:
 - Reaction & diffusion fluctuations
- Goal: To understand the importance of these fluctuations, and how to incorporate them into the analysis

SIRS epidemic model as a case study

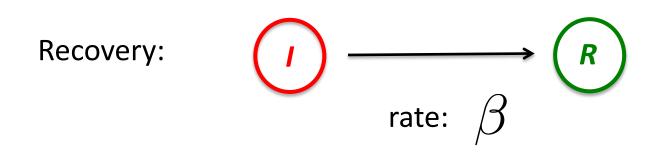
- A infectious disease model with 3 types of individuals
 - S: density of susceptible individuals
 - I : density of infected individuals
 - R : density of recovered individuals



Infection:

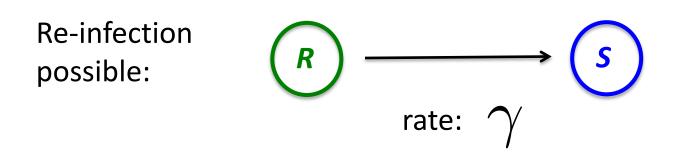
SIRS epidemic model as a case study

- A infectious disease model with 3 types of individuals
 - S: density of susceptible individuals
 - I : density of infected individuals
 - R : density of recovered individuals

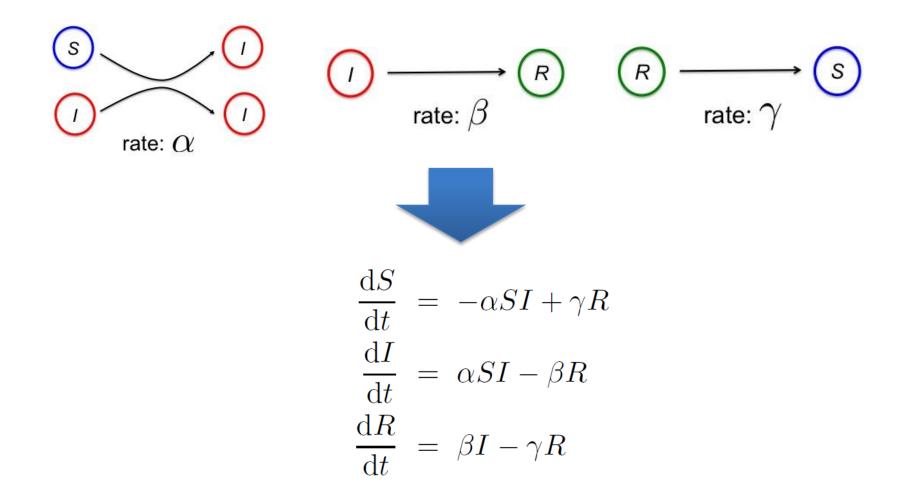


SIRS epidemic model as a case study

- A infectious disease model with 3 types of individuals
 - S: density of susceptible individuals
 - I : density of infected individuals
 - R : density of recovered individuals

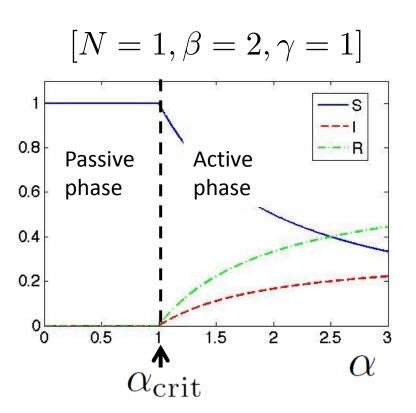


Epidemic evolution



Steady-state solution

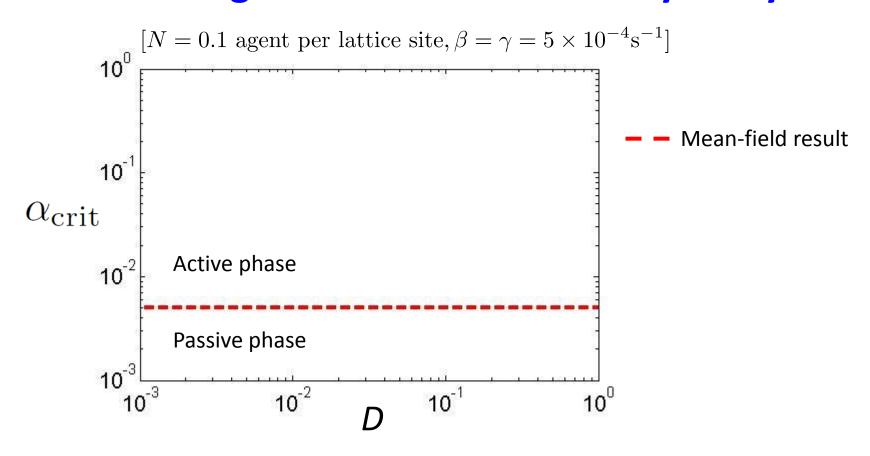
- 1 conservation law: N = S(t) + I(t) + R(t)
- 1 stable fixed point:



How about diffusion?

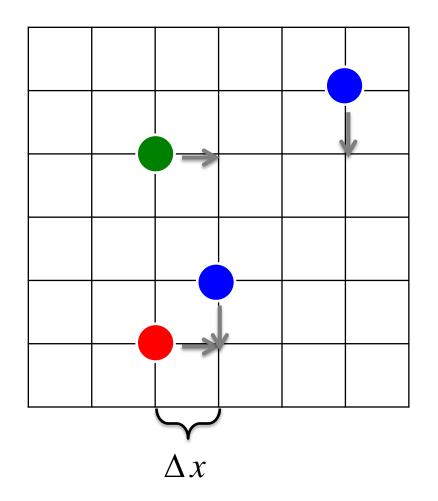
- Typical setup: $\partial_t S = D\nabla^2 S \alpha SI + \gamma R$ $\partial_t I = D\nabla^2 I + \alpha SI - \beta R$ $\partial_t R = D\nabla^2 R + \beta I - \gamma R$
- Linear stability from mean-field fixed point at α_{crit} , i.e., consider $S(\mathbf{x},t) = 1 + \epsilon_S e^{\sigma t + i\mathbf{k}\cdot\mathbf{x}}$, etc
- Find: $\sigma = -Dk^2 + (\alpha \beta)$ \Rightarrow diffusion has no effect on stability

Phase diagram from linear stability analysis



Is this true?

What are we actually modelling? A microscopic picture



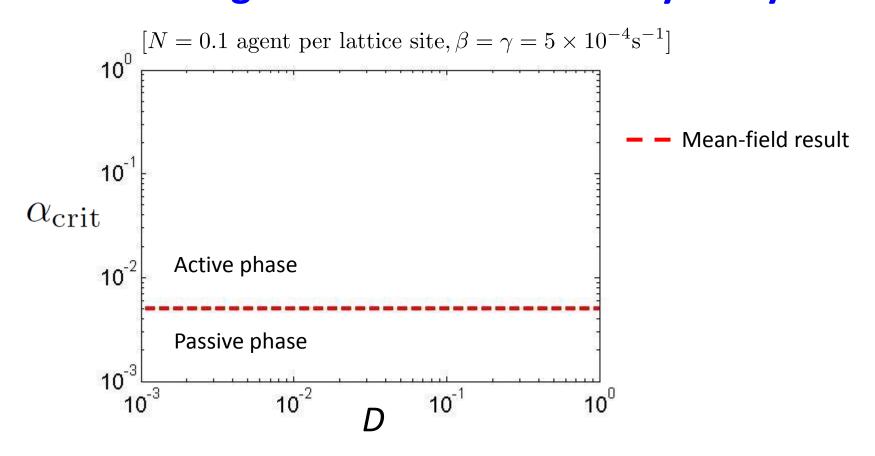
• S, R, I hop to the neighbouring site with rate Γ

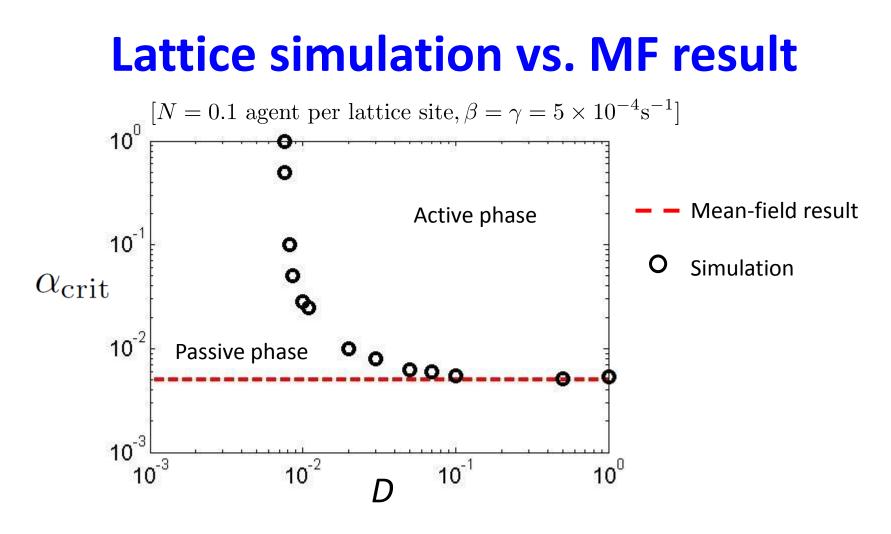
$$D = \Gamma \triangle x^2$$

• S+I → I+I

happens with rate α when *S* and *I* overlap

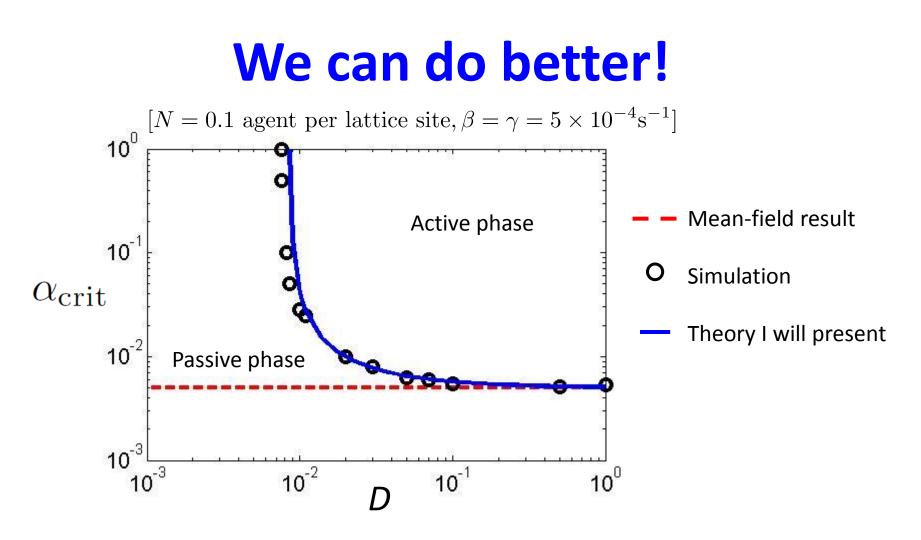
Phase diagram from linear stability analysis





What is missing?

Neglect of fluctuations in reaction and diffusion events!



- I will now present a theory that incorporates all the fluctuations into the analysis
- The theory is called the Doi-Peliti formalism and is based on quantum field theory

But first, a bit of history on fluctuation analysis

• Forget about diffusion, and focus on the simple reaction system

$$A + A \xrightarrow{\lambda} \emptyset$$

- Macroscopic equation: $\frac{\mathrm{d}n}{\mathrm{d}t} = -2\lambda n^2$
- To capture fluctuations Chemical Master Equation (CME):

 $\frac{\mathrm{d}}{\mathrm{d}t}P(n,t) = \lambda \left[(n+2)(n+1)P(n+2,t) - n(n-1)P(n,t) \right]$

• Unfortunately, the CME is usually intractable

 \rightarrow need approximations

Kramers-Moyal (KM) expansion

- Start from CME: $\frac{\mathrm{d}}{\mathrm{d}t}P(n,t) = \sum_{h} \left[W(n,h)P(h,t) W(h,n)P(n,t)\right]$
- Assume transitions only happen in neighbouring states:

$$\begin{aligned} \frac{\partial}{\partial t} P(n,t) &= \int dh \left[W(n,n-h) P(n-h,t) - W(h,n) P(n,t) \right] \\ &= \int dh \sum_{l=1}^{\infty} \frac{(-h)^l}{l!} \frac{\partial^l}{\partial n^l} \left[\eta_l(n) P(n,t) \right] \end{aligned}$$
where
$$\eta_l(n) &= \int dh (n-h)^l W(h,n)$$

• For the process: $A + A \xrightarrow{\lambda} \emptyset$, we have

$$\frac{\partial}{\partial t}P(n,t) = 2\lambda \frac{\partial}{\partial n} [n^2 P(n,t)] + 2\lambda \frac{\partial^2}{\partial n^2} [n^2 P(n,t)]$$
Drift Fluctuations

van Kampen approximation

- Also known as system size expansion, Ω expansion, or linear noise approximation
- Define new variables: $n(t) = \Omega \phi(t) + \sqrt{\Omega} x(t)$
- Substitute back into KM expansion to get two equations:
 - One for the intensive variable and one for the fluctuations

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} = -2\lambda\phi^2$$

$$\frac{\partial}{\partial t}P(x,t) = 4\lambda\phi(t)\frac{\partial}{\partial x}[xP(x,t)] + \lambda\phi(t)^2\frac{\partial^2}{\partial x^2}P(x,t)$$

Problems

- These approximations fail if the system size Ω (i.e., volume, total particle numbers, etc) is small
- Population can become negative due to fluctuations boundary conditions not captured properly
- Solutions: keep track of the boundary condition and the discrete nature of problem seriously by using raising and lowering operators

Operator formalism

- Start with the empty state, the state with no particles: $|0\rangle$
- Define raising operator: and lowering operator:

$$a^{\dagger}|n\rangle = |n+1\rangle$$
$$a|n\rangle = n|n-1\rangle$$

• In vector and matrix form:

$$|0\rangle = \begin{pmatrix} \vdots \\ 0 \\ 0 \\ 1 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} \vdots \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad a^{\dagger} = \begin{pmatrix} \ddots \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad a = \begin{pmatrix} \ddots \\ 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

• In particular: $a^{\dagger}a|n\rangle = n|n\rangle$ $[a,a^{\dagger}] \equiv aa^{\dagger} - a^{\dagger}a = 1$

Operator representation of CME

• Back to $A + A \xrightarrow{\lambda} \emptyset$, with CME:

 $\frac{\mathrm{d}}{\mathrm{d}t}P(n,t) = \lambda \left[(n+2)(n+1)P(n+2,t) - n(n-1)P(n,t) \right]$

• To use operators, first define: $|\psi(t)\rangle \equiv \sum_{n} P(n,t)|n\rangle$

• Then
$$\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle = \lambda(1-a^{\dagger 2})a^2\sum_{n}P(n,t)|n\rangle$$

= $-\hat{H}|\psi(t)\rangle$ \leftarrow Schrödinger equation

• Formal solution: $|\psi(t)\rangle = \exp(-\hat{H}t)|\psi(0)\rangle$

Erwin Schrödinger, Nobel Prize '33

Getting rid of non-commutative operators

• Introduce coherent states:

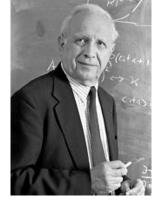
$$|\phi\rangle = \exp\left(-\frac{1}{2}|\phi|^2 + \phi a^{\dagger}\right)|0\rangle$$

where φ is a complex number

• Slice up the temporal evolution:

$$e^{-\hat{H}t} = \int \dots |\phi_{t+\Delta t}\rangle \langle \phi_{t+\Delta t}| e^{-\hat{H}\Delta t} |\phi_t\rangle \langle \phi_t| e^{-\hat{H}\Delta t} |\phi_{t-\Delta t}\rangle \langle \phi_{t\Delta t}| \dots$$

Path integral method



Roy Glauber Nobel Prize '05

Richard Feynman Nobel Prize '65

Field theory—it's all about integration

• Do a lot of integration to compute average density

$$\bar{n}(t) = \int \mathcal{D}\bar{\phi}\mathcal{D}\phi\phi(t)\mathrm{e}^{-S}$$

where

$$S = \int d^{d}x dt \left[\bar{\phi} (\partial_{t} - D\nabla^{2})\phi + 2\lambda \bar{\phi} \phi^{2} + \lambda \bar{\phi}^{2} \phi^{2} - n_{0} \bar{\phi} \delta(t) \right]$$
$$\mathcal{D}\bar{\phi}\mathcal{D}\phi = \Pi_{k} \left(\frac{d(\mathrm{Im}\phi_{t_{k}})d(\mathrm{Re}\phi_{t_{k}})}{\pi} \right)$$

Doi-Peliti vs. Kramers-Moyal

• In terms of Langevin's equations:

Kramers-Moyal:
$$\mathrm{d}\bar{n} = -2\lambda\bar{n}^2\mathrm{d}t + \sqrt{\lambda}\bar{n}\mathrm{d}w$$

Doi-Peliti:
$$d\bar{n} = -2\lambda \bar{n}^2 dt + i\sqrt{\lambda}\bar{n} dw$$

Nothing's perfect ...

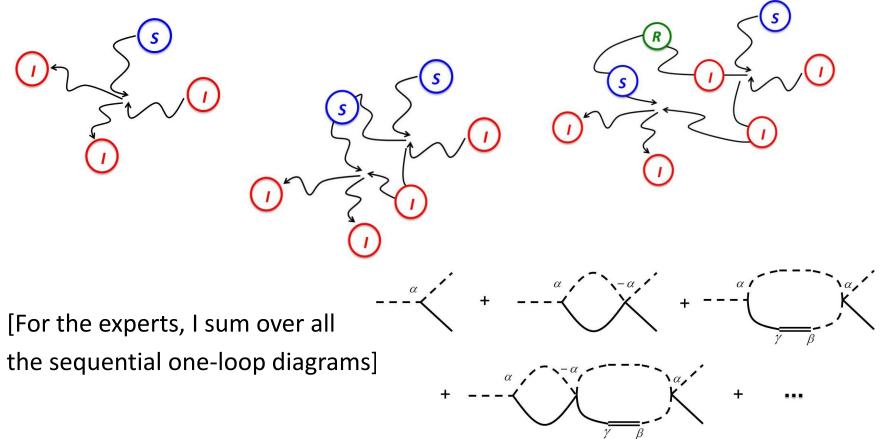
• **Problem:** we can't really do the integration!

$$\bar{n}(t) = \int \mathcal{D}\bar{\phi}\mathcal{D}\phi\phi(t)\mathrm{e}^{-S}$$

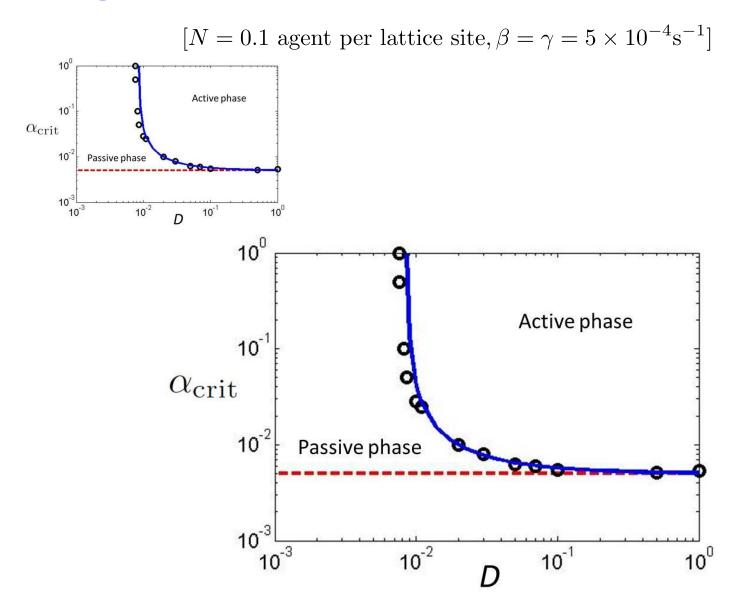
• But: Doi-Peliti formalism enables us to do the integration partially based on physical pictures

So what did I calculate?

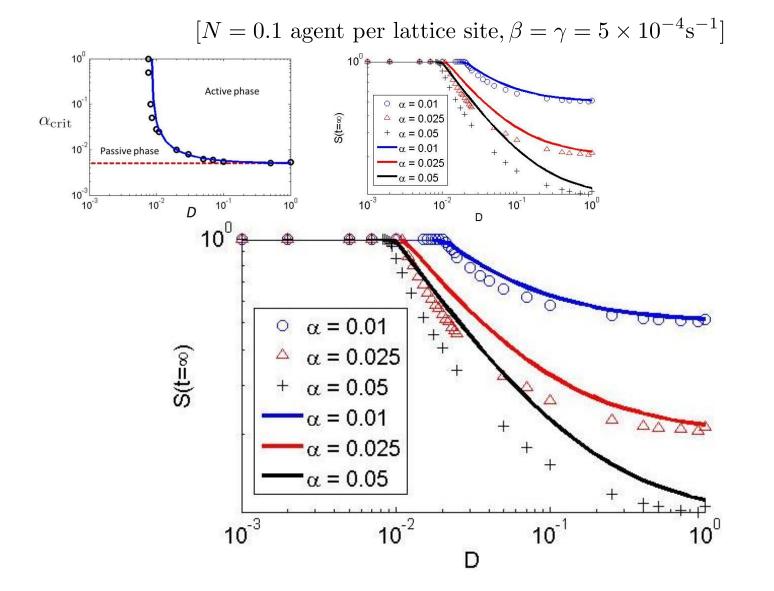
Specifically, I considered the following interactions in the calculation:



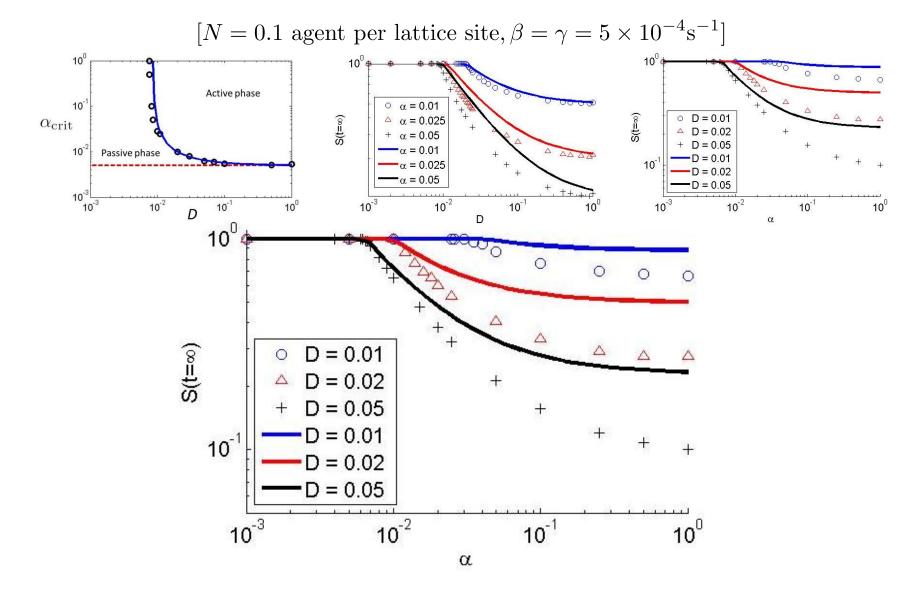
Agreements with simulation results



Agreements with simulation results



Agreements with simulation results

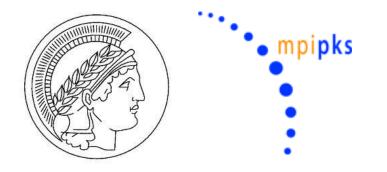


Conclusion

- Mobility and fluctuations have critical effects on reaction-diffusion systems
- Doi-Peliti field-theoretical formalism is a method to analyse these effects
- Need further method development to provide a more comprehensive treatment of the problem

Thanks

Fernando Peruani Laboratoire J.A. Dieudonné, Université de Nice—Sophia Antipolis



Max Planck Institute for the Physics of Complex Systems Dresden, Germany

References

• Today's talk:

F. Peruani and <u>C.F. Lee</u>. Fluctuations and the role of collision duration in reaction-diffusion systems. *In preparation.*

• References on the Doi-Peliti method:

–John Cardy. Reaction-Diffusion Processes. *Available on his homepage.* –U.C. Täuber, M. Howard and B.P. Vollmayr-Lee (2005) Applications of field-theoretic renormalization group methods to reaction–diffusion problems. *Journal of Physics A* **38**, R79.

Thank you!