Where to dig for gold?

Simple ‘tricks’ to help find new universality classes
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PhYSiCS ~ U niversal bEhaViOur + O(model specific details) *

*Asymptotic series: leading terms can be different



Mathematical definition of universality

Universality Class = Fixed point (FP) of renormalisation group

(RG) coarse graining procedure

Universal behaviour = Properties quantifiable by RG FP
Relevant terms in model equations = Terms that affect RG FP

Irrelevant terms = Terms that do not affect RG FP



Renormalisation group

A mathematical, coarse-graining procedure that incorporates

fluctuations to quantify how model parameters are modified

at larger length scales
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Universal model vs. universality class

Lattice Boltzmann simulation
Molecular model of water

Air particles flowing past
aircraft wings

Navier-Stokes:

Navier-Stokes UC: Universal Model for simple fluids
Stokes fluids



Categorisation: chemical elements vs. universality classes
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Symmetries & conservation laws (SCL) - UC



Why universality classes = gold?

* UCs are eternal

* |ts utility tends to go up with time
—Kardar-Parisi-Zhang model as an example
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Simple tricks to identify new UCs

1. Start with a model with new symmetries &
conservation laws

. Mean-field analysis

. Linear stability analysis

. Linear fluctuating hydrodynamics

o B W N

. Power counting (zeroth order RG) analysis



Colour wheel used to determine direction of velocity

" g.ff' 2 ‘"_ - p E
D Nesbitt, G Pruessner CFL (2021) NJP 23, 043047

1. Start with a model with new symmetries &
conservation laws: Polar active fluids as an example



Polar active fluids

« Hydrodynamic variables: density p and momentum g

e Conservation law: Mass conservation

I ]
—

ip+V - g




: hp+V-g = 0
Symmetries AT V-8

e What is the force F?

e Starting with symmetries:
— Temporal invariance: F does not depend on time
— Translational invariance: F does not depend on position r
— Rotational invariance: F does not depend on a particular direction
— Chiral (parity) invariance: F is not right-handed or left-handed



Toner-Tu Equations of Motion (EOM) paussian nolse ferms

(J(x.0)) =0
(fe.t)f(. 1)) = 2D — ') (t — 1)

hp+V-g =20 \

g+ (g -V)g+ (V- -glg+ Vg = Ulp.g)g — miVp — roglg - Vp) + pVig +f 4 -

Citation: "For seminal work on the theory
of flocking that marked the birth and
contributed greatly to the development of
the field of active matter."




Free energy

X Adapted from
QuantumbDiaries.org

2. Mean-field analysis



Mean-field analysis of polar active fluids

df;)+%— 0

g + Mg + DBl + SN =|Ulp. 8)g|- i rglBe)p) + 19g 1K+ X
1

—(a+pg*+-)g

:> Spatiotemporally homogeneous solutions:

lel | 1. Ordered phase of systems with new SCL
—> New UC for the ordered phase?

2. Critical transition from disordered phase to a
new ordered phase
—> New UC for the critical behaviour?

Ordered phase Disordered phase

. FOCUS Of today

0 a




MF = A new phase and a new critical UC
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3. Linear stability analysis




Linear stability analysis

 MF analysis — two spatiotemporally homogeneous phases

Ordered phase ! Disordered phase

0 a



Linear stability: disordered phase _ orderedphase ! Disordered phase

0
e Start with linearised TT EOM: Op+V-g=0, Og=—aog—rmVip+mV'g
. . . t. — 1 ' +—iq -
. Consider homogeneous state with perturbations: ~ “\"'*) = Po T epexp (st —iq x)
g(t,r) = €gexp (st —iq-r)
« Substitution into linearised EOM: sep+iq =0,  s8 = —aof, — Kiiqe, — 119’
* Re-write as an eigenvalue problem: s = Mp - & b= (c, &)
0 _ig 0
Mp = | —ik1q —ag — pg? 0
0 0 (—f-’m - ﬁﬂfi'g) | P
» Solve for eigenvalues: oo — pg? o [ —a
S=\  aotud® o \/{o:.:]-l—;eqi}? — k1q? — _ K12 Always negative!
2 - 4 a0y



Linear stability: disordered phase _ oweredphase 1 Disordered phase

0

Start with linearised TT EOM: Op+V-g=0, g=—aog—mVép+pu Vg

p(t,r) = po+€pexp(st —iq-r)

Consider homogeneous state with perturbations: Fltr) = & exp (st —iq- 1)

Substitution into linearised EOM: sep+iq g =0,  s& = —ao, — K1iqe, — 1114°E,

Re-write as an eigenvalue problem: s = Mp - & ¢ = (e &)

El - hlqu

Solve for eigenvalues: { DisO

q—0 — g _
ST _aotud® L \/{&c]+.uq‘j‘}'2 oo T 7\ _E12 Always negative!
2 —



Linear stability: Ordered phase Ordered phase ! _Disordered phase

0 a
(%p +V.g =0
g+ 2g-Vg = Vg —kVp+alp)g — Bo’g

Start with linearised TT EOM:

p(t,r) = po+e,exp(st—iq-r)
g(t.r) = gox+ €,exp (st —iq-r)

Consider homogeneous state with perturbations:

Substitution into linearised EOM

Re-write as an eigenvalue problem

a? a1\

Solve for eigenvalues: s= [ 3~ 2|ag (gh; T3 )} >+ 0(q") Always positive when a is small!

-

where o (pg 4 dp) = ag + a1dp + O(5p%)



Linear stability analysis > more complicated phase diagram

I
I
Ordered phase ! Disordered phase

n
>

a

Similar to thermal phase separation:

N - N o

) Nucleation & Growth regime:
T Linearly stable (metastable)
but not globally stable

Linearly  Linearly Linearly
stable  unstable stable

\ 4

Discontinuous transition

7\

Ordered Phase Disordered
phase separation phase

Instability region:
Spinodal-decomposition

A J

©



Linear stability analysis > more complicated phase diagram

Ordered phase ! Disordered phase Phase separation - Banding regime
0 a
> > G Grégoire & H Chaté (2004) PRL 92, 025702
Linearly  Linearly Linearly E Bertin, M Droz & G Grégoire (2006) PRE 74, 022101
stable unstable stable

\ 4

Discontinuous transition

7\

Ordered Phase Disordered
phase separation phase

Colour wheel used to determine direction of velocity

v

D Nesbitt, G Pruessner CFL (2021) NJP 23, 043047



Linear stability analysis > more complicated phase diagram

Ordered phase ! Disordered phase Phase separation - Banding regime
0 a
- > G Grégoire & H Chaté (2004) PRL 92, 025702
Linearly  Linearly Linearly E Bertin, M Droz & G Grégoire (2006) PRE 74, 022101
stable  unstable stable

\ 4

Discontinuous transition

7\

Ordered Phase Disordered
phase separation phase

Colour wheel used to determine direction of velocity

v

D Nesbitt, G Pruessner CFL (2021) NJP 23, 043047



2

No so fast!

1A
Remember that in the ordered phase, the key eigenvalueis s = [ 3~ 2|aq (th + ﬂ; )} q* + O(q")

.
L
i

where a(po +dp) = ao + a1dp + O(3p*)

What if a4 is zero? E.g., collective motion speed goes down with density :

_aA

— a4 can be zero and so no instability as all!




An example

ExX: —alp)=—-A+p— ;JQ

Disordered (D)

Ordered
(O)




Recovery of ordered-disordered critical point

Phase diagram

~ Colour wheel used to
determine direction of
velocity

Reverse-
banding

Banding

Density, p

D Nesbitt, G Pruessner & CFL (2021) NJP 23, 043047;
T Bertand & CFL (2022) Phys Rev Res 4, L022046




Linear stability - An enriched phase diagram with a
new critical UC by fine tuning 2 parameters



Colour wheel used to determine direction of velocity
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D Nesbitt, G Pruessner CFL (2021) NJP 23, 043047

4. Linear fluctuating hydrodynamics



Linear fluctuating hydrodynamics at criticality

Start with linearised TT EOM with noise:

Op+V-g=0, f}fg=—><— HIVc?p—i—,ulVEg +f

Fourier transformed spatiotemporally Op(wq.q) = / IS p(t )

Beg.@) = [ (0,
r

Re-write in matrix form

Find correlation functions between hydrodynamic fields to find

(p(r, t)p(r', 1)) oc |r—r'|>~ (g(r,t) - g(r', 1)) o |[r—1/[>
(p(r,t)p(r,t')) o [t —t/|P=D/2 (g(r.t)-g(r,t)) o« |t—t'|E9/2



Linear fluctuating hydrodynamics - power-law
correlations among hydrodynamic fields at criticality



ugigigidig

5. Power counting (zeroth order RG) analysis



s it a new UC? r—e’ | t=et, dp—=eXip, g eXlg

: . 2 —d
 Remember the scaling exponents from the linear theory: z =2, x = 5

Use them to ascertain 1) the upper critical dimension, and 2) relevant nonlinear
terms

Here, upper critical dimension is 4, and some of the relevant terms are
A3

g+ Ai(g-V)g+ Xag(V-g) + EV(\g\Q) = Blgl’g +--+f

No previous models have studied these nonlinearities before!



Power counting = critical model contains
nonlinearities never studied before
— indicative of a new UC



Summary: simple tricks to identify new UCs

Bs W N

New set of symmetries & conservation laws: polar active

fluids as an example

. Mean-field analysis = critical point

Linear stability analysis - enriched phase diagram
Linear fluctuating hydrodynamics — critical exponents
Power counting (zeroth order RG) analysis - upper

critical dimensions + relevant terms



Outlook 1

Now that we know where to
dig, how do we actually start

digging?

Gold standard:
Renormalisation group
analysis (Wilsonian, field-
theoretic, functional)




New UCs in polar active fluids

Flocking with quenched
disorder in 2D
Chen, Lee, Maitra & Toner

Flocking in 3D
Toner-Tu “flocking” UC Chen, Lee & Toner
Toner & Tu (1995) PRL (2020) PRL

(2022) PRL

Flocking with
guenched disorder
Toner, Guttenberg, &
Tu (2018) PRL

Critical behaviour
Chen, Toner & Lee
(2015) NJP

Critical behaviour with
guenched disorder
Zinati, Besse, Tarjus,

Tissier (2022) PRE

Compressible
[ ] Incompressible
Infinitely compressible

3 UCs for multicritical
behaviour
Jentsch & Lee (2023) PRR

Vicsek’s flocking phase
Jentsch & Lee (2024) PRL

l

Critical behaviour
Miller & Toner (2024)
PRE

| |

Dynamics UC for flocking in 2D
Chen, Lee, Maitra & Toner
(2024) PRE

1995 2000

2005

2010 2015

2020 2025



Outlook 2

5 decades ago, technological relevance, experimental
advances, and abundance of novel physics propelled

condensed matter physics to become the ‘King of Physics’
[Martin (2019) Physics Today]

With its relevance to health and life, experimental
advances, and abundance of novel physics, | believe
biophysics will be the next ‘condensed matter physics’
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