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Physics leads to quantitative biology




Novel Biology <— Novel Physics

Amyloid fibrils

B: Relevant to many
neurogenerative diseases

P: Dynamics of polymeric
assembly

C Brangwynne et al. (2009) Science

Biomolecular condensates

B: Key organisational principles inside cells

P: Novel modes of phase separation

https://www.youtube.com/watch?v=EimBzUSmak8

Tissue dynamics

B: Tissue morphogenesis, wound healing,
collective motions in organisms

P: Novel universality classes in
nonequilibrium physics
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Coarsening in phase separation

Coarsening is very slow in biomolecular condensation, why?
Resolution — rugged energy landscape in protein conversion
Conversion-limited phase separation and its emergent physics

A S

Summary & outlook



1. Coarsening in phase separation



Phase separation vs. emulsion

Phase separation

Free energy minimisation -

A stable emulsion

But this is what we see in cells >
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First attempts at explaining away coarsening

 For coalescence

— Almost absent because of corralling due to cytoskeleton and molecular crowding

* For Ostwald ripening

— Almost absent because of small surface tension



Problem: Not so simple sk

A.W. Folkmann, A.A. Putnam, CFL, and G. Seydoux (2021)
Regulation of biomolecular condensates by interfacial protein clusters
Science 373 1218



Problem: Not so simple

TABLE I: Parameters are estimates taken from [2]

Parameters Value
Using typical parameters, 85% of PGL granules Typical monomer volume, v I nm®
. . . Capillary length, [, 15 nm
would have d|Sappea red in 6min under Typical monomer diffusion coefficient, D |30 um?/s
: : Partition coefficient, ¢;y, /cout 20
Ostwald ripening Embryo volume 30 pL
Generic coarsening
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A.W. Folkmann, A.A. Putnam, CFL, and G. Seydoux (2021)

Regulation of biomolecular condensates by interfacial protein clusters
Science 373 1218




2. Coarsening is very slow in biomolecular
condensation, why?



More sophisticated resolutions needed !?

* Driven chemical reactions converting proteins between soluble and

phase separating states
[D Zwicker et al (2014) PNAS; D Zwicker et al (2015) PRE; JD Wurtz & CFL (2018) PRL]

* Mechanical suppression of drop growth via cytoskeletal networks
[M Feric et al (2013) Nat Cell Biol; RW Style et al (2018) PRX; KA Rosowski et al (2020) Nat Phys]

Subdiffusion of drops

[DSW Lee et al (2021) Nat Phys]

* Pickering effects (coating of drop surface to reduce surface tension)
[AW Folkmann et al (2021) Science]



More sophisticated resolutions needed !?

* Driven chemical reactions converting proteins between soluble and
phase separating states

-> Stop Ostwald ripening & coalescence through driven chemical reactions
* Mechanical suppression of drop growth via cytoskeletal networks
-> Stop Ostwald ripening & coalescence due to a ‘rigid’ network 11 (2020) Nat Phys]

e Subdiffusion of drops

* Pickering effects (coating of drop surface to reduce surface tension)
-> Stop Ostwald ripening & coalescence through surface tension-reducing coating



Is there a more fundamental reason?

* Occam’s razor: “Plurality must never be posited
without necessity”.

* Indeed, slow kinetics has been observed in a
different kind of biomolecular system



>

Free energy

3. Resolution — rugged energy landscape in
protein conversion



Drawing inspiration from another system
amyloid fibrils F L

Abeta amyloid fibrils

* Amyloid fibrils consist of
cross beta sheets

Pn ol ahiod * Fibrils elongate by
Y10 H1a K16 F20 incorporating free

peptide monomer in
AT Petkova et al (2002) PNAS solution




Slow elongation dynamics

* Elongation dynamics was found to be slow (e.g., ~1 peptide
per second under in vitro conditions), even though
— No driven chemical reactions
— No rigid networks limiting fibril growth
— No subdiffusive behaviour



Resolution — a rugged energy landscape picture
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CFL, J Loken, L Jean and DJ Vaux (2009) Elongation dynamics of amyloid fibrils: A rugged energy landscape picture.

Phys Rev E



A cartoon explanation in 1D

Normal diffusion Diffusion over a rugged energy landscape
Energy | Energy
x’ X
. \2
Diffusion coefficient: D Analytical results: Doy = D exp [_ (@) ]

Eg if e = ZkBT, Deff ~ 0.01xD

Conversion over a rugged energy landscape can be
dramatically slowed down!

R Zwanzig (1998) Diffusion in a rough potential. PNAS



Back to biomolecular condensates
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Free energy

“Conversion coordinate”

Conversion over a rugged energy landscape can be
dramatically slowed down!

AW Folkmann, A Putnam, CFL, & G Seydoux (2021) Science
CFL (2021) Physical Review Research
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Free energy

“Conversion coordinate”

4. Conversion-limited phase separation and
its emergent physics



Conversion-limited phase separation

Coarsening rate limited by peptide conversion rates (free €< condensates), not
diffusion of monomeric peptides
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Late-stage universal coarsening behaviour
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CFL (2021) Scaling law and universal drop size distribution of
coarsening in conversion-limited phase separation. Phys Rev Res



Diffusion-limited vs. conversion-limited

Standard Lifshitz-Slyozov-Wagner

A theory
Cin
Universal drop (D) Zexp(l — 325)
e 8LswiZ 773 S\ 11/3°
size distribution: (14+2)7 (1= %)

Kinetic scaling: (R(t)) ~ +1/3

Universality class
of diffusion-limited phase separation

Conversion-limited coarsening
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Universality class
of conversion-limited phase separation

CFL (2021) Phys Rev Res



Summary

Slow coarsening kinetics in biomolecular condensation observed can be
explained by conversion-limited phase separation

— novel universal physics of phase separation

Free energy

“Conversion coordinate”



Outlook

Biology inspires new physics
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Physics leads to quantitative biology




