SoftBio Theory Seminar, Physics Department Oxford University, 13 November 2023

Active Matter A treasure trove of novel universality classes

Chiu Fan Lee
Department of Bioengineering, Imperial College London, UK

Imperial College London

Universal physics in biology

Amyloid formation

Biomolecular condensation

Active matter

Pytowski, Lee, Foley, Vaux, Jean (2020) Liquid-liquid phase separation of type II diabetes associated IAPP initiates hydrogelation and aggregation **PNAS**

Folkmann, Putnam, Lee, Seydoux (2021) Regulation of biomolecular condensates by interfacial protein clusters Science

Killeen, Bertrand, Lee (2022) Polar Fluctuations Lead to Extensile Nematic Behavior in **Confluent Tissues** Phys Rev Lett

Acknowledgement

A fully funded PhD studentship (for home student) is currently available!

Patrick Jentsch

Leiming Chen (China U Mining & Technology)

Ananyo Maitra (CY Cergy Paris Université)

John Toner (Oregon)

Imperial College London

Plan of talk

- 1. What are universality classes (UC)?
- 2. Active matter: Incompressible polar active fluids (IPAF)
- 3. New UC in IPAF
- 4. Beyond IPAF
- 5. Summary & Outlook

1. What are universality classes (UC)?

UC = renormalisation group fixed point

What is the Renormalization Group (RG)?

- RG is
 - a coarse-graining procedure
 - incorporates short-distance dynamics into longer-distance dynamics

Critical Ising: RG flow = Parameter flow of Hamiltonian

$$H_0 = \int d^d r \left[(\nabla S(\mathbf{r}))^2 + t_0 S(\mathbf{r})^2 + u_0 S(\mathbf{r})^4 + g_6 S(\mathbf{r})^6 + \lambda_4 (\nabla S(\mathbf{r}))^4 + \dots \right]$$

- 1. Coarse grain out short wavelength fluctuations
- 2. Rescale
- 3. Renormalise

$$H_l = \int d^d r \left[(\nabla S(\mathbf{r}))^2 + t_l S(\mathbf{r})^2 + u_l S(\mathbf{r})^4 \right]$$

l goes up further

$$H^* = \int d^d r \left[(\nabla S(\mathbf{r}))^2 + t^* S(\mathbf{r})^2 + u^* S(\mathbf{r})^4 \right]$$

becomes the (asymptotically) exact model

Categorisation: chemical elements vs. universality classes

Atomic no. \rightarrow elements

Hohenberg and Halperin (1977) Rev. Mod. Phys.

Symmetries & conservation laws → UC

Universality classes (UCs)

Are fixed points of RG transformation

 Categorise dynamical systems into distinct critical phenomena & phases (states of matter)

- Provide unambiguous definition of novel physics
 - New UC → New physics

2. Active matter: Incompressible polar active fluids (IPAF)

Q: Given how complicated biological systems are (e.g., cell tissues), how is meaningful modelling ever possible?

A: Even if the microscopic dynamics is complicated, the underlying symmetry & conservation law may be simple

→ universal hydrodynamic equations of motion

E.g., Navier-Stokes for thermal fluids

- Incompressible limit for simplicity
- Hydrodynamic variable: velocity \vec{v}

Equation of motion (EOM):

$$\partial_t \vec{v} =
ho^{-1} \vec{F}$$
 , with constraint $\nabla \cdot \vec{v} = 0$

• What is the force field \vec{F} ?

Symmetries

EOM:
$$\partial_t \vec{v} = \rho^{-1} \vec{F}$$

- Temporal invariance: F does not depend on time
- Translational invariance: F does not depend on position r
- Rotational invariance: F does not depend on a particular direction
- Chiral (parity) invariance: F is not right-handed or left-handed
- Galilean invariance: EOM invariant under a boost

Symmetries

EOM:
$$\partial_t \vec{v} = \rho^{-1} \vec{F}$$

- Temporal invariance: F does not depend on time
- Translational invariance: F does not depend on position r
- Rotational invariance: F does not depend on a particular direction
- Chiral (parity) invariance: F is not right-handed or left-handed
- Galilean invariance: EOM invariant under a boost
- To order $O(v^2, \partial^2)$ [hydrodynamics], incompressible NS EOM:

$$\partial_t \vec{v} = -\vec{\nabla} P - (\vec{v} \cdot \vec{\nabla}) \vec{v} + \mu \nabla^2 \vec{v} + \dots + \vec{f_0}$$

IPAF

EOM:
$$\partial_t \vec{v} = \rho^{-1} \vec{F}$$

- Temporal invariance: F does not depend on time
- Translational invariance: F does not depend on position r
- Rotational invariance: F does not depend on a particular direction
- Chiral (parity) invariance: F is not right-handed or left-handed
- Galilean invariance: EOM invariant under a boost
- Noise term satisfying symmetries & fluctuation-dissipation relation

Hydrodynamic EOM of incompressible active fluids

Higher order terms in $\nabla \& \vec{v}$

'pressure' (Lagrange multiplier) to enforce incompressibility

Now that we have a model (a.k.a. Toner-Tu model [Toner & Tu (1995) PRL]), what do we do next?

Simplest thing first \rightarrow mean-field analysis: $(a_0 + b_0 v^2) = 0$

 $a_0 < 0 \rightarrow$ ordered phase with non-zero \vec{v} : active collective motion

3. New UCs in IPAF

Order-disorder critical transition

RG analysis of the EOM

$$\partial_t \vec{v} + \vec{\nabla} P + \vec{f_l} = -\lambda_l (\vec{v} \cdot \vec{\nabla}) \vec{v} - (a_l + b_l v^2) \vec{v} - \mu_l \nabla^2 \vec{v}$$

Two nonlinearities: λ_l and b_l , $l \sim$ level of RG transformation

Methodology:

Dynamic RG + ϵ -expansion at 1-loop

[L Chen, J Toner, CFL (2015) New J. Phys. 17, 042002]

$$g_b$$
 0.05 0.1 0.15 0.2

 $g_{\lambda}(l) \sim \frac{D_l \lambda_l^2}{\mu_l^3}$; $g_b(l) \sim \frac{D_l b_l}{\mu_l^2}$

"Ferromagnets with dipolar interactions" Aharony and Fisher (1973) Phys. Rev. Lett.

"Randomly stirred fluids (Model B)" Forster, Nelson & Stephen (1977) Phys. Rev. A

$$g_{\lambda}(l) \sim \frac{D_l \lambda_l^2}{\mu_l^3}; g_b(l) \sim \frac{D_l b_l}{\mu_l^2}$$

"Ferromagnets with dipolar interactions" Aharony and Fisher (1973) Phys. Rev. Lett.

2.5 "Randomly stirred fluids (Model B)" Forster, Nelson & Stephen (1977) Phys. Rev. A Incompressible active fluids g_{λ} 1.5 In 3D: $\langle \vec{v}(\vec{r}) \cdot \vec{v}(\vec{r}') \rangle \sim |\vec{r} - \vec{r}'|^{-2+82/113}$ 0.5 0.05 0.1 0.15 g_b

 $g_{\lambda}(t) \sim \frac{\overline{\mu_l^3}}{\mu_l^3}; g_b(t) \sim \frac{\overline{\mu_l^2}}{\mu_l^2}$

"Ferromagnets with dipolar interactions" Aharony and Fisher (1973) Phys. Rev. Lett.

Ordered phase

RG analysis of the Goldstone-mode EOM in 3D:

$$\partial_t \vec{v}_{\perp} + \vec{\nabla}_{\perp} P + \vec{f}_{\perp} = -\lambda_l (\vec{v}_{\perp} \cdot \vec{\nabla}_{\perp}) \vec{v}_{\perp} - b_l v^2 \vec{v}_{\perp} - \mu_l \nabla^2 \vec{v}_{\perp}$$

Two nonlinearities: λ_l and b_l , $l \sim$ level of RG transformation

Methodology:

Dynamic RG [L Chen, J Toner, CFL (2018) New J. Phys. 20,113035]

Functional RG [P Jentsch, CFL (2023) arXiv:2307.06725]

RG flow

L Chen, J Toner, CFL (2018) New J. Phys. 20,113035

 \downarrow

Same UC as found in Toner & Tu (1995) PRL

P Jentsch, CFL (2023) Can exact scaling exponents be obtained using the renormalization group? Affirmative evidence from incompressible polar active fluids arXiv:2307.06725

RG analysis of the EOM in 2D:

$$\partial_t \vec{v} + \vec{\nabla}P + \vec{f}_l = -(a_l + b_l v^2)\vec{v} - \mu_l \nabla^2 \vec{v}$$

One nonlinearity: b_l , $l \sim$ level of RG transformation

Methodology:

Dynamic RG [L Chen, CFL, J Toner (2016) Nature Communication]

Dynamic RG + ϵ -expansion at 1-loop [L. Chen, CFL, A. Maitra, J. Toner (2023) arxiv:2304.06139]

L Chen, CFL, J Toner (2016) Surprising mappings of 2D polar active fluids to 2D soap and 1D sandblasting Nature Communications 7, 12215. E

L Chen, CFL, J Toner (2016) Surprising mappings of 2D polar active fluids to 2D soap and 1D sandblasting Nature Communications 7, 12215. E

L Chen, CFL, J Toner (2016) Surprising mappings of 2D polar active fluids to 2D soap and 1D sandblasting Nature Communications 7, 12215. E

Use ϵ -expansion at 1-loop to get dynamic exponent

[L. Chen, C.F. Lee, A. Maitra and J. Toner (2023) Dynamics of packed swarms: time-displaced correlators of two dimensional incompressible flocks, arxiv:2304.06139]

→ Exact static exponents

L Chen, CFL, J Toner (2016) Surprising mappings of 2D polar active fluids to 2D soap and 1D sandblasting Nature Communications 7, 12215

Universal behaviour of Incomp polar active fluids

- 3D: 'Exact' exponents by DRG & FRG, same UC as found in Toner-Tu (1995)
 PRL [Chen, Lee, Toner (2018)
 NJP; Jentsch, Lee (2023) arxiv]
- 2D: Exact static exponents
 by DRG → KPZ UC [Chen,
 Lee, Toner (2016) Nat Comm];
 New dynamical UC by
 DRG at 1-loop [Chen, Lee,
 Maitra, Toner (2023) arxiv]

New UC: exponents by DRG at 1-loop [Chen, Toner, Lee (2015) NJP]

4. Beyond IPAF

Going beyond

Compressible PAF

$$-\partial_t \rho = -\nabla \cdot \mathbf{j}$$

 Infinitely compressible / Malthusian PAF

$$-\nabla \cdot \mathbf{v} \neq 0$$

- Quenched disorder
 - Noise statistics:

$$\langle f_Q^i(\mathbf{r}, t) f_Q^j(\mathbf{r}', t') \rangle = 2D_Q \delta_{ij} \delta^d(\mathbf{r} - \mathbf{r}')$$

Cameron & Liverpool (2022) Nature

A treasure trove of UCs

Compressible PAF

5. Summary & Outlook

Summary

 Universality classes (UCs) for dynamical systems ≈ periodic table for elements

Symmetry + conservative laws → universal EOM → RG analyses → UC identification

- 3. Many new UCs in polar active fluids
 - Incompressible, compressible, Malthusian

Outlook 1: Key open question

Toner-Tu 'flocking' UC Toner & Tu (1995) PRL

• Toner-Tu 1995 UC was supposed to describe ordered phase of generic compressible PAFs [Toner, Tu (1995) PRL]

 But Toner later realised nonlinearities missed in original 1995 analysis [Toner (2012) PRE]

 And recent simulation suggests flocking ≠ Toner-Tu 1995 UC [Mahault, Ginelli, Chaté (2019) PRL]

So, what is the correct UC for CPAF?

Critic Chen, To (201

Outlook 2

5 decades ago, technological relevance, experimental advances, and abundance of novel physics propelled condensed matter physics to become the 'King of Physics' [Martin (2019) Physics Today]

With its relevance to health and life, experimental advances, and abundance of novel physics, I believe biophysics will be the next 'condensed matter physics'