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Biology inspires new physics
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Physics leads to quantitative biology




Universal physics in biology

Amyloid formation Biomolecular condensates Active matter
. y _ . t . '

CF Lee et al (2012) J Biol Chem C Brangwynne et al. (2009) Science Active vertex simulation by Andy Killeen

Newton Institute: 9-13 Oct 2023
Biological condensates: cellular mechanisms
governed by phase transitions




Plan

Defining the problem
Universality of the tissue model
Resolving the problem using linear theory

> W e

Summary & outlook

Ref: Killeen, Bertrand & Lee (2022) Polar Fluctuations Lead to Extensile Nematic Behavior in Confluent Tissues
Phys Rev Lett 128, 078001



Acknowledgement

Thibault Bertrand
Mathematics, Imperial College

\

' -.wf_-li

g

:f'tb CANCER | IMPERIAL
-3 RESEARCH | CENTRE

Aty UK
NIHR | et

Biotechnology and
Biological Sciences
Research Council

Engineering and
Physical Sciences
Research Council

Imperial College
London




1. Defining the problem

Polar fluctuations
lead to

in
confluent tissues



Confluent Tissues

A dense, gapless collection of cells

E.g., Madin-Darby canine kidney (MDCK) epithelial cell tissue

For the real experiments, see Saw, T., Doostmohammadi,
A., Nier, V. et al. Topological defects in epithelia govern
cell death and extrusion. Nature 544, 212-216 (2017)



Nematic behaviour in confluent tissues

Cell shape (cell elongation) - nematic director

)=

Nematic director n = (cos 8, sin 8)




Nematic behaviour in confluent tissues

Cell shape (cell elongation) - nematic director
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Nematic director n = (cos 8, sin 8)
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For the real experiments, see Saw, T., Doostmohammadi,
A., Nier, V. et al. Topological defects in epithelia govern
cell death and extrusion. Nature 544, 212-216 (2017)



Nematic behaviour in confluent tissues

Cell shape (cell elongation) - nematic director - Nematic field at tissue level

no fluctuations more fluctuations even more fluctuations > defects



Nematic behaviour in confluent tissues

Half integral defects in nematic fields

Winding by —180° : -1/2 defect Winding by 180° : +1/2 defect



Nematic behaviour in confluent tissues

Half integral defects in nematic fields

@® +1/2defect

Winding by 180° : +1/2 defect

Winding by —180°: -1/2 defect

- 1/2 defect



Cellular contractile stresses = contractile nematics

Cell is contractile

Expects +1/2 defect to
move down

For the real experiment, see Balasubramaniam, L.,
Doostmohammadi, A., Saw, T.B. et al. Investigating
the nature of active forces in tissues reveals how
contractile cells can form extensile

monolayers. Nat. Mater. 20, 1156-1166 (2021).



Problem: +1/2 moves in opposite direction as expected
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Expt: +1/2 defects behave as if the cells are extensile: @

Q: Why the contractile (cellular level) = extensile (tissue level) transition?



Resolution: cell-substrate interactions

For the real experiments, see,
e.g., Petitjean, L. et al. Velocity

Cell tissues can crawl on a substrate <: Fields In a Collectively
Migrating Epithelium
Biophysical Journal, Volume 98,
Issue 9, 1790 - 1800



Resolution: cell-substrate interactions

Cell tissues can crawl on a substrate

N2

Polar (directional) fluctuations at cellular level

N2

Generic extensile nematic behaviour at tissue level,

even for contractile cells
[Killeen, Bertrand & Lee (2022) Phys Rev Lett;
See also Vafa, Bowick, Shraiman & Marchetti (2021) Soft Matt for a related perspective]






Q: Given how complicated biological systems are (e.g., cell
tissues), how is meaningful modelling ever possible?

A: Even if the microscopic dynamics is complicated, the
underlying symmetry & conservation law may be simple

— universal hydrodynamic equations of motion



Example: Navier-Stokes eqns for thermal fluids

* Incompressible limit for simplicity
* Hydrodynamic variable: velocity v

e Equation of motion (EOM):
0,0 = p~LF , with constraint V-3 = 0

 What is the force field F?



Symmetries EOM: 9,3 = p~1F

— Temporal invariance: F does not depend on time

— Translational invariance: F does not depend on position r

— Rotational invariance: F does not depend on a particular direction
— Chiral (parity) invariance: F is not right-handed or left-handed

— Galilean invariance: EOM invariant under a boost

 To order O(v?, 9%) [hydrodynamics], incompressible NS EOM:
Orv; +v;0;v; = vV v; + p~ L Oip

Lagrange multiplier to enforce the incomp. condition




Modelling confluent tissues

S: strength of nematic alignment
* Hydrodynamic variables l g
— velocity ¥ + nematic field Q = S2n @ n — 1) n = (cosd,sin6)

— (@ is a symmetric, traceless, 2 X 2 matrix

* Equations of motion (EOM):
0.V = A, with constraint V- v = 0
d:Q = B, such that B is symmetric & traceless



Symmetries & constraints - universal EOM

 Same symmetries as in Navier-Stokes, except no Galilean invariance

* For small 7, Q, linear theory suffices:
0=uV*v—-VP+aV-Q-Tv+¢
0=A[Vv+(VV)']|+DV*Q—-1Q+Q

Cell stresses on substrate - Polar fluctuations: <fi(t» r)) =0,
(&i(t.r)E; (') = 2A0;;0(t - )6 (r —1').
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0=puV*v—-VP+aV-Q—-Tv+¢

Generic linear theory )= A [Vv £ (V)T] + DV?Q - 1Q + 0

While we don’t know what the parameters are, we expect:
* For stability reason: u,I',D,n > 0
* A > 0because, e.g., d,,v, > 0 should lead to an increasing Q,.,

* Finally, whatis a?
— Remember NS, 0,V = ...+ V-0 + -, where o is the stress tensor. Hence o~aQ

— where Q = ((1) _01)

— the system is contractile when a>0 @ ;. extensile when a<0 @

Therefore, for MDCK cells, we expect that a > 0

— Consider




So, why do we see extensile 0=puV*—-VP+aV -Q-Tv+E¢
behaviour at the tissue level? 0=\[Vv+(Vv)T] +DVQ-1Q+Q

Ans: the effective a is ‘renormalised’ by other parameters in the system.

Specifically, if we focus only on how the defects move by ignoring other
dynamical features, we are effectively assuming that

[V ~ C(effv . Q
Since agfr % (U - (V- Q)), we can calculate the sign of aq¢f:

d*k 5 G(k) B rx)Lsz(k)zl}
(v-(V-Q)) = / (ZJI)Z(D!(Z ) {—ZA&kZG(k)Z + algk D tn (DT }?)2

where  G(k) = {uk* + " + [Aak?/(DKk* + n)]}~!
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So, why do we see extensile
behaviour at the tissue level?

0=puV*v—-VP+aV-Q—-Tv+¢

0=A[Vv+(Vv)']+DVQ-1Q+

Ans: the effective a is ‘renormalised’ by other parameters in the system.

Specifically, if we focus only on how the defects move by ignoring other
dynamical features, we are effectively assuming that
[V ~ C(effv . Q

Since agfr % (U - (V- Q)), we can calculate the sign of aq¢f:
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where  G(k) = {uk* + " + [Aak?/(DKk* + n)]}~!



Compressible tissues

* Hydrodynamic variables
— Density p + velocity v + nematic field Q

e Equations of motion (EOM) from symmetry consideration
Oep = —po(V -v)
v = Vv + 1sV(V -v) —c*Vp—Tv + &
0:Q=\NVv+Vv')+DVQ-1Q.

* Same analysis - same conclusion



Tissues as active solids

* Hydrodynamic variables

— Displacement field u + nematic field Q

e Equations of motion (EOM) from symmetry consideration
I'v=AV?u+ BV(V -u)+¢
nQ =C[Vu+ (Vu)'| + \[Vv+(Vv)']| +DVQ

* Same analysis - same conclusion



Summary

Q: How come contractile cells can exhibit extensile active nematic behaviour at the
tissue level?

A: Extensile dynamics comes from cell-substrate fluctuations
Demonstration using universal linear theory for confluent tissues

Similar conclusion applies for
— Compressible confluent tissues
— Confluent tissues in the solid state

Ref: Killeen, Bertrand & Lee (2022) Polar Fluctuations Lead to Extensile Nematic Behavior in Confluent Tissues
Phys Rev Lett 128, 078001



A broader perspective

1. Identify variables (fields) of interest

Symmetry consideration - universal model equations

3. Hydrodynamics - dramatic reduction in model parameters
— tractable model

4. Biophysical inputs - meaningful conclusions

N



	Slide 1: Polar Fluctuations Lead to Extensile Nematic Behaviour in Confluent Tissues
	Slide 2
	Slide 3
	Slide 4: Plan
	Slide 5: Acknowledgement
	Slide 6: 1. Defining the problem  
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: 2. Universality of the tissue model    
	Slide 18
	Slide 19: Example: Navier-Stokes eqns for thermal fluids
	Slide 20: Symmetries
	Slide 21: Modelling confluent tissues
	Slide 22: Symmetries & constraints → universal EOM
	Slide 23: Generic linear theory
	Slide 24: So, why do we see extensile behaviour at the tissue level?
	Slide 25: So, why do we see extensile behaviour at the tissue level?
	Slide 26: So, why do we see extensile behaviour at the tissue level?
	Slide 27: Compressible tissues
	Slide 28: Tissues as active solids
	Slide 29: Summary
	Slide 30: A broader perspective

