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1. Defining the problem

Polar fluctuations 
lead to 
extensile nematic behaviour 
in 
confluent tissues



A dense, gapless collection of cells

E.g., Madin-Darby canine kidney (MDCK) epithelial cell tissue

Confluent Tissues

For the real experiments, see Saw, T., Doostmohammadi, 
A., Nier, V. et al. Topological defects in epithelia govern 

cell death and extrusion. Nature 544, 212–216 (2017)



Cell shape (cell elongation) → nematic director 

Nematic behaviour in confluent tissues
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Nematic director 𝑛 = (cos 𝜃 , sin 𝜃)
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Cell shape (cell elongation) → nematic director → Nematic field at tissue level

Nematic behaviour in confluent tissues

no fluctuations more fluctuations even more fluctuations → defects 



Half integral defects in nematic fields

Nematic behaviour in confluent tissues
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Winding by −180◦ : -1/2 defect Winding by 180◦ : +1/2 defect
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Cellular contractile stresses → contractile nematics

For the real experiment, see Balasubramaniam, L., 
Doostmohammadi, A., Saw, T.B. et al. Investigating 
the nature of active forces in tissues reveals how 
contractile cells can form extensile 
monolayers. Nat. Mater. 20, 1156–1166 (2021).

Cell is contractile

Expects +1/2 defect to 
move down



Problem: +1/2 moves in opposite direction as expected

Q: Why the contractile (cellular level) → extensile (tissue level) transition?

Expt: +1/2 defects behave as if the cells are extensile:



Resolution: cell-substrate interactions

Cell tissues can crawl on a substrate

For the real experiments, see, 
e.g., Petitjean, L. et al. Velocity 
Fields in a Collectively 
Migrating Epithelium
Biophysical Journal, Volume 98, 
Issue 9, 1790 - 1800



Resolution: cell-substrate interactions

Cell tissues can crawl on a substrate
↓

Polar (directional) fluctuations at cellular level
↓

Generic extensile nematic behaviour at tissue level, 
even for contractile cells

[Killeen, Bertrand & Lee (2022) Phys Rev Lett;
See also Vafa, Bowick, Shraiman & Marchetti (2021) Soft Matt for a related perspective]



2. Universality of the tissue 
model 



Q: Given how complicated biological systems are (e.g., cell 
tissues), how is meaningful modelling ever possible?

A: Even if the microscopic dynamics is complicated, the 
underlying symmetry & conservation law may be simple 

→ universal hydrodynamic equations of motion 



Example: Navier-Stokes eqns for thermal fluids

• Incompressible limit for simplicity

• Hydrodynamic variable: velocity Ԧ𝑣

• Equation of motion (EOM):

𝜕𝑡 Ԧ𝑣 = 𝜌−1 Ԧ𝐹 , with constraint ∇ ∙ Ԧ𝑣 = 0

• What is the force field Ԧ𝐹?



Symmetries

– Temporal invariance: F does not depend on time

– Translational invariance: F does not depend on position r

– Rotational invariance: F does not depend on a particular direction

– Chiral (parity) invariance: F is not right-handed or left-handed

– Galilean invariance: EOM invariant under a boost

• To order 𝑂 𝑣2, 𝜕2 [hydrodynamics], incompressible NS EOM:

EOM: 𝜕𝑡 Ԧ𝑣 = 𝜌−1 Ԧ𝐹

Lagrange multiplier to enforce the incomp. condition



Modelling confluent tissues

• Hydrodynamic variables

– velocity Ԧ𝑣 + nematic field 𝑄 = 𝑆(2𝑛 ⊗ 𝑛 − Ι)

– 𝑄 is a symmetric, traceless, 2 × 2 matrix

• Equations of motion (EOM):

𝜕𝑡 Ԧ𝑣 = 𝐴, with constraint ∇ ∙ Ԧ𝑣 = 0

𝜕𝑡𝑄 = 𝐵, such that 𝐵 is symmetric & traceless

𝑛 = (cos 𝜃 , sin 𝜃)

𝑆: strength of nematic alignment



Symmetries & constraints → universal EOM

• Same symmetries as in Navier-Stokes, except no Galilean invariance

• For small Ԧ𝑣, 𝑄, linear theory suffices:

Cell stresses on substrate → Polar fluctuations:

Cell-cell interactions → Nematic fluctuations:



Generic linear theory

While we don’t know what the parameters are, we expect:

• For stability reason: 𝜇, Γ, 𝐷, 𝜂 > 0

• λ > 0 because, e.g., 𝜕𝑥𝑣𝑥 > 0 should lead to an increasing 𝑄𝑥𝑥
• Finally, what is 𝛼?

– Remember NS, 𝜕𝑡 Ԧ𝑣 = …+ ∇ ∙ 𝜎 +⋯, where 𝜎 is the stress tensor. Hence 𝜎~𝛼𝑄

– Consider                           where 𝑄 =
1 0
0 −1

→ the system is contractile when 𝛼>0                                   ;   extensile when 𝛼<0 

Therefore, for MDCK cells, we expect that 𝛼 > 0



So, why do we see extensile 
behaviour at the tissue level?

Ans: the effective 𝛼 is ‘renormalised’ by other parameters in the system.

Specifically, if we focus only on how the defects move by ignoring other 
dynamical features, we are effectively assuming that 

Γ Ԧ𝑣 ≈ 𝛼eff∇ ∙ 𝑄

Since 𝛼eff ∝ Ԧ𝑣 ∙ (∇ ∙ 𝑄) , we can calculate the sign of 𝛼eff :
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Compressible tissues

• Hydrodynamic variables

– Density 𝜌 + velocity Ԧ𝑣 + nematic field 𝑄

• Equations of motion (EOM) from symmetry consideration

• Same analysis → same conclusion



Tissues as active solids

• Hydrodynamic variables

– Displacement field 𝑢 + nematic field 𝑄

• Equations of motion (EOM) from symmetry consideration

• Same analysis → same conclusion



Summary

Q: How come contractile cells can exhibit extensile active nematic behaviour at the 
tissue level?

A: Extensile dynamics comes from cell-substrate fluctuations

Demonstration using universal linear theory for confluent tissues

Similar conclusion applies for

– Compressible confluent tissues

– Confluent tissues in the solid state

Ref: Killeen, Bertrand & Lee (2022) Polar Fluctuations Lead to Extensile Nematic Behavior in Confluent Tissues
Phys Rev Lett 128, 078001



A broader perspective

1. Identify variables (fields) of interest
2. Symmetry consideration → universal model equations
3. Hydrodynamics → dramatic reduction in model parameters 

→ tractable model
4. Biophysical inputs → meaningful conclusions
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