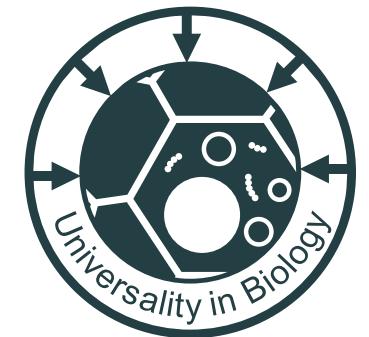


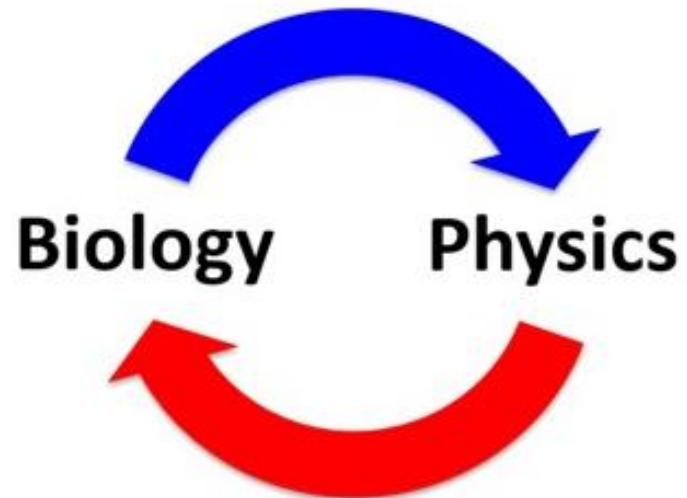
# Polar Fluctuations Lead to Extensile Nematic Behaviour in Confluent Tissues

Chiu Fan Lee

*Institute of Cancer Research, London, UK, and  
Department of Bioengineering, Imperial College London, UK*



Biology inspires new physics



Physics leads to quantitative biology

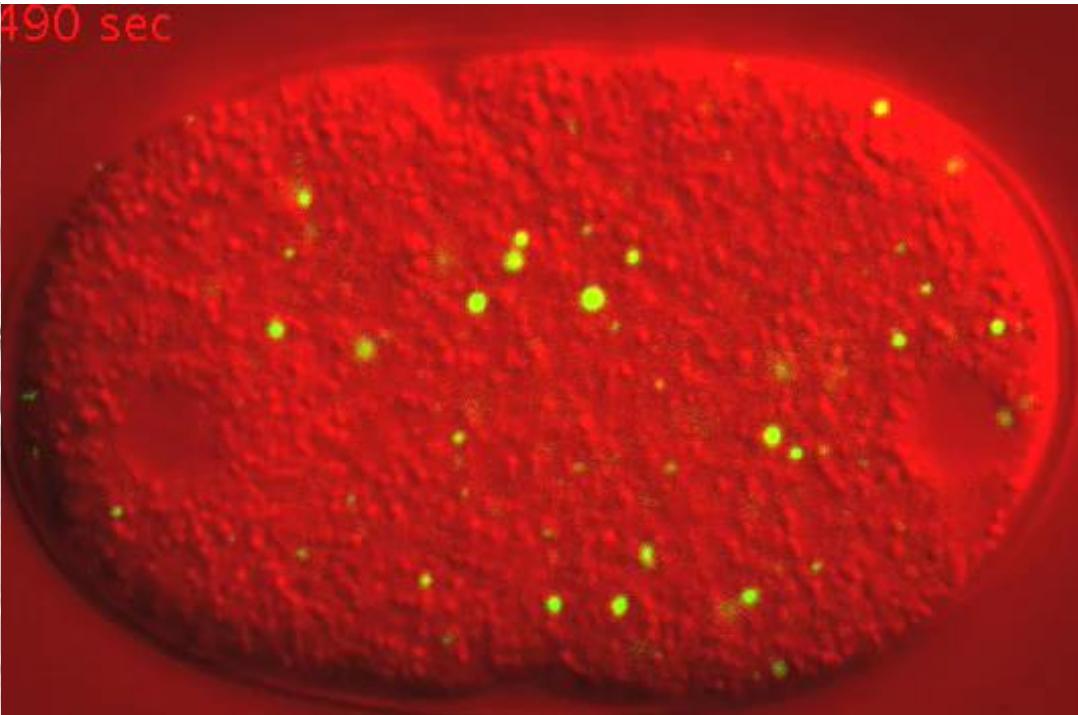
# Universal physics in biology

Amyloid formation



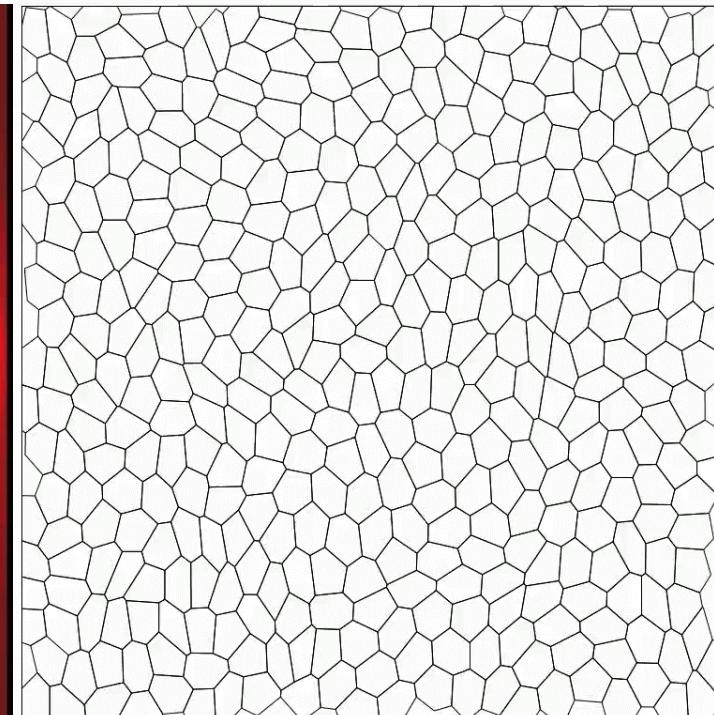
CF Lee et al (2012) J Biol Chem

Biomolecular condensates



C Brangwynne et al. (2009) Science

Active matter



Active vertex simulation by Andy Killeen

Newton Institute: 9-13 Oct 2023  
Biological condensates: cellular mechanisms  
governed by phase transitions



# Plan

1. Defining the **problem**
2. Universality of the tissue model
3. Resolving the **problem** using linear theory
4. Summary & outlook

*Ref: Killeen, Bertrand & Lee (2022) Polar Fluctuations Lead to Extensile Nematic Behavior in Confluent Tissues  
Phys Rev Lett 128, 078001*

# Acknowledgement



Thibault Bertrand  
Mathematics, Imperial College

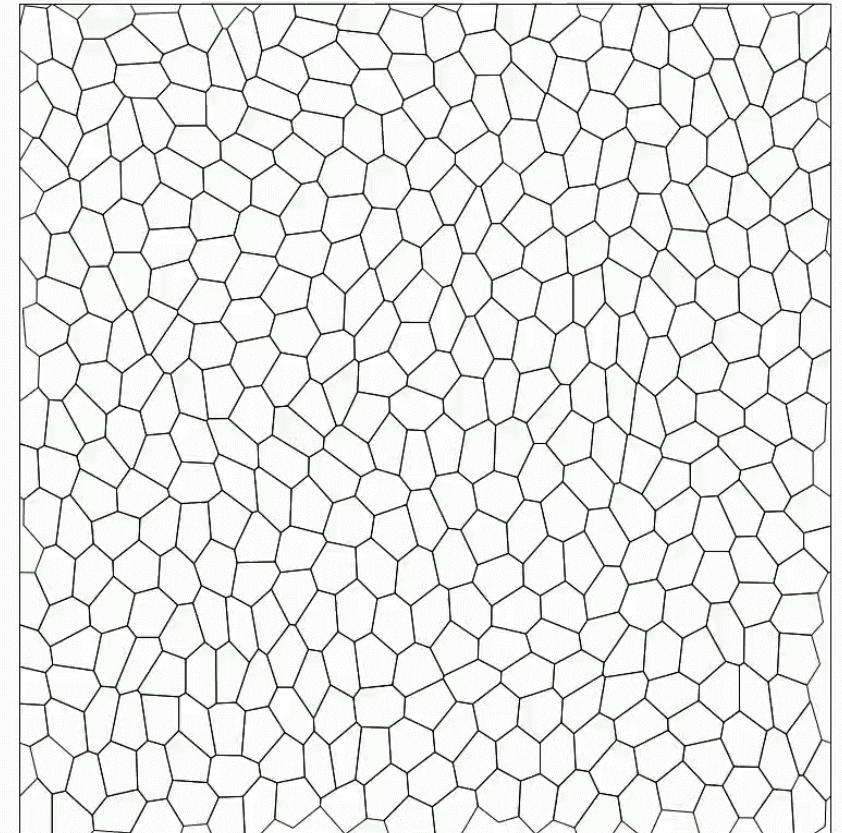
## 1. Defining the problem

Polar fluctuations  
lead to  
extensile nematic behaviour  
in  
confluent tissues

# Confluent Tissues

A dense, gapless collection of cells

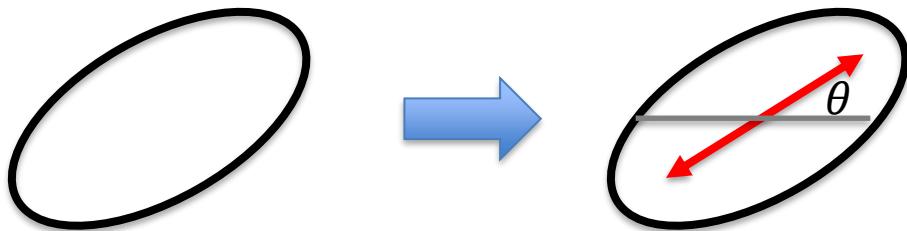
E.g., Madin-Darby canine kidney (MDCK) epithelial cell tissue



For the real experiments, see Saw, T., Doostmohammadi, A., Nier, V. *et al.* Topological defects in epithelia govern cell death and extrusion. *Nature* **544**, 212–216 (2017)

# Nematic behaviour in confluent tissues

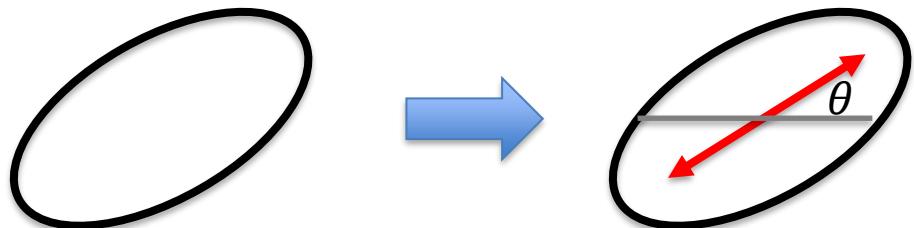
Cell shape (cell elongation)  $\rightarrow$  nematic director



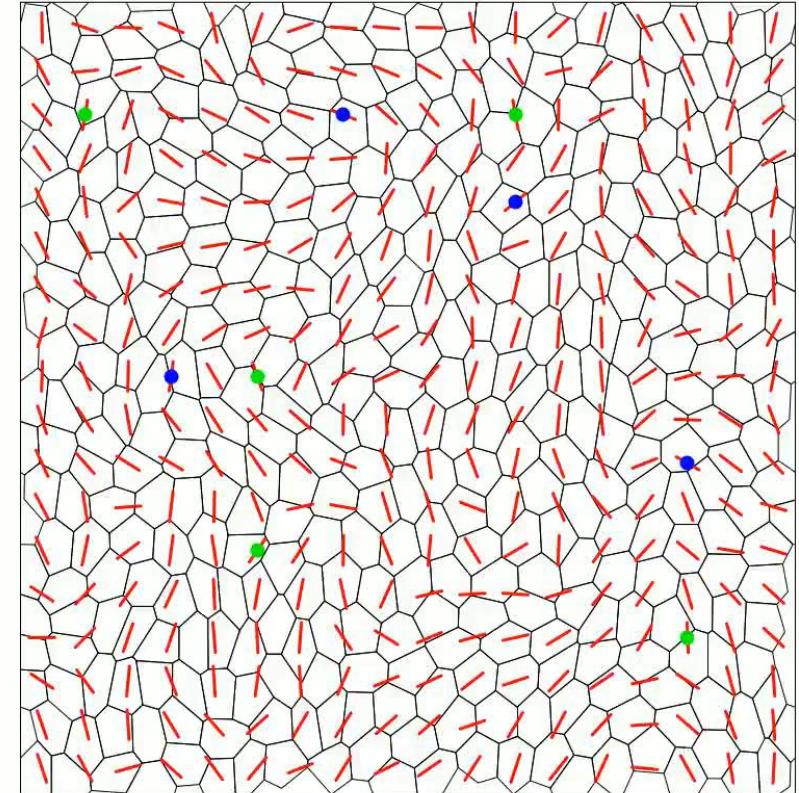
$$\text{Nematic director } \vec{n} = (\cos \theta, \sin \theta)$$

# Nematic behaviour in confluent tissues

Cell shape (cell elongation)  $\rightarrow$  nematic director



$$\text{Nematic director } \vec{n} = (\cos \theta, \sin \theta)$$



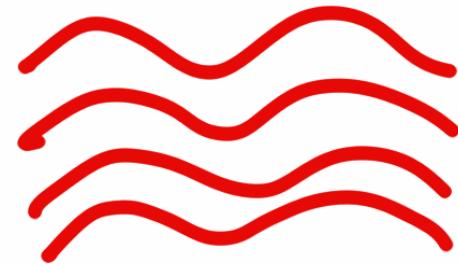
For the real experiments, see Saw, T., Doostmohammadi, A., Nier, V. *et al.* Topological defects in epithelia govern cell death and extrusion. *Nature* **544**, 212–216 (2017)

# Nematic behaviour in confluent tissues

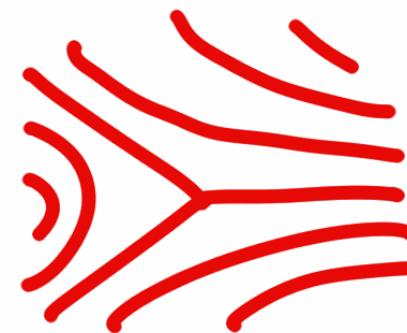
Cell shape (cell elongation) → nematic director → Nematic field at tissue level



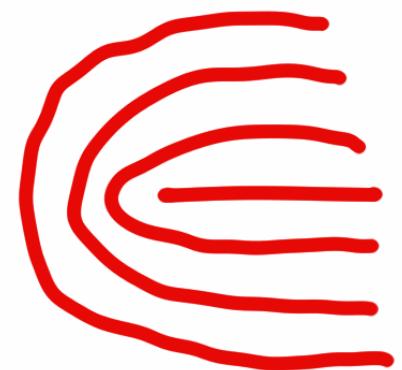
no fluctuations



more fluctuations

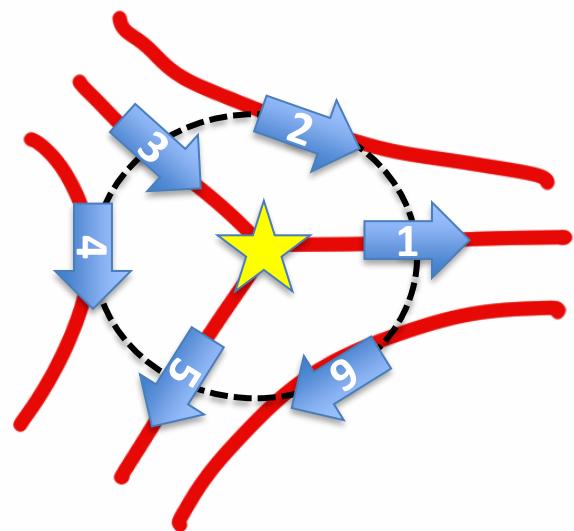


even more fluctuations → defects

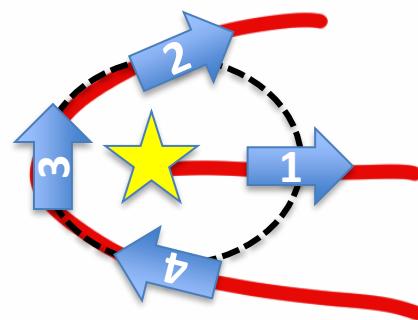


# Nematic behaviour in confluent tissues

Half integral defects in nematic fields



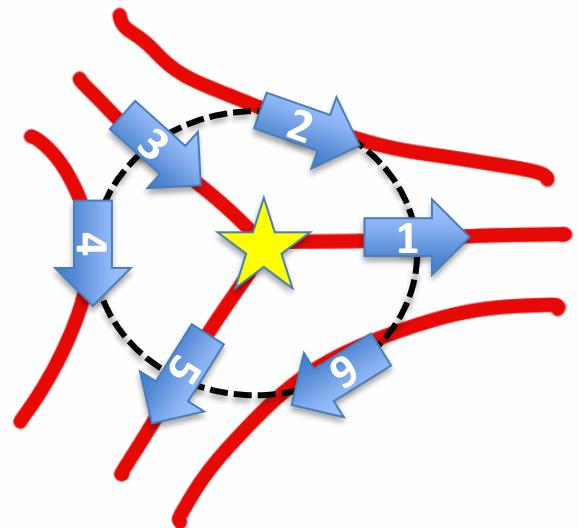
Winding by  $-180^\circ$  :  $-1/2$  defect



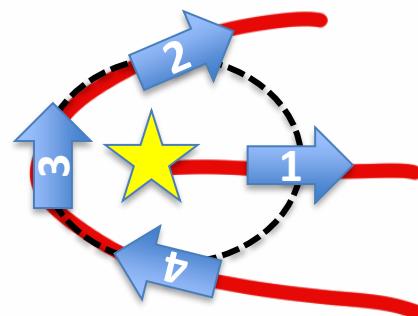
Winding by  $180^\circ$  :  $+1/2$  defect

# Nematic behaviour in confluent tissues

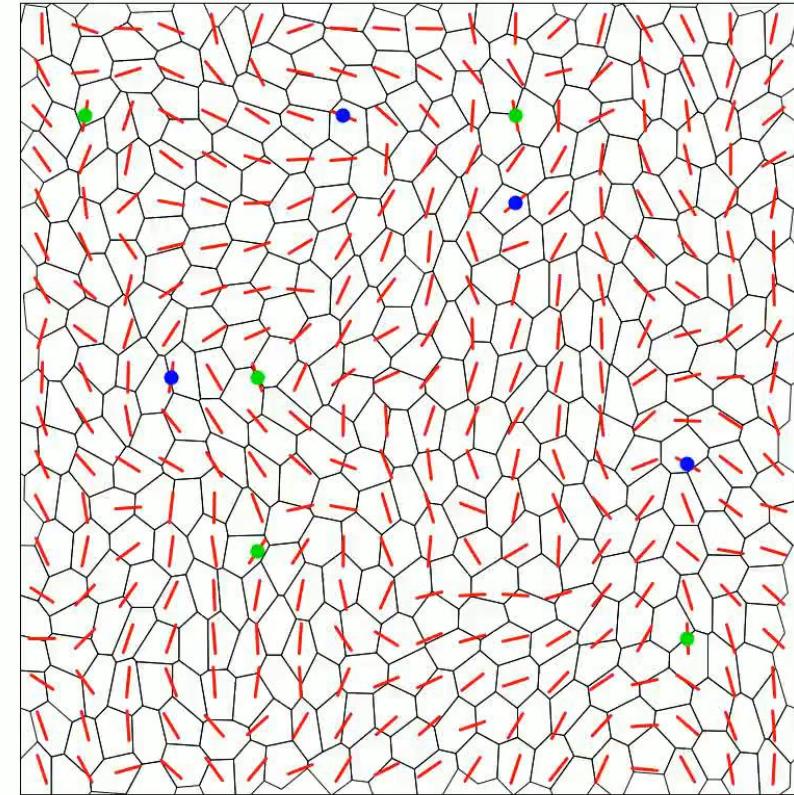
Half integral defects in nematic fields



Winding by  $-180^\circ$  :  $-1/2$  defect

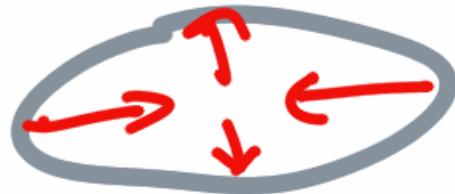


Winding by  $180^\circ$  :  $+1/2$  defect



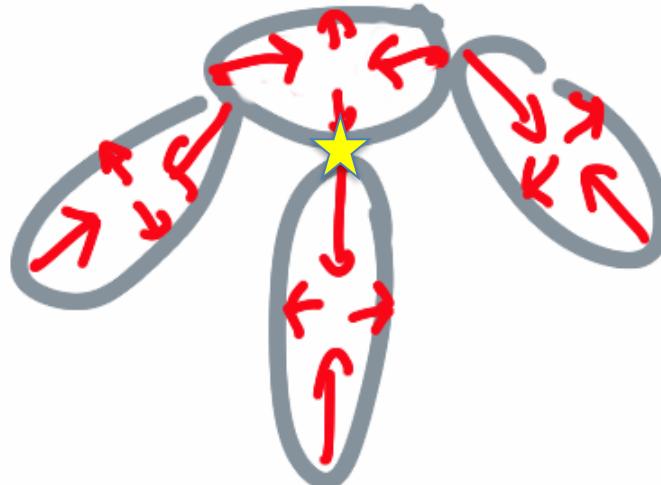
- $+1/2$  defect
- $-1/2$  defect

# Cellular contractile stresses → contractile nematics



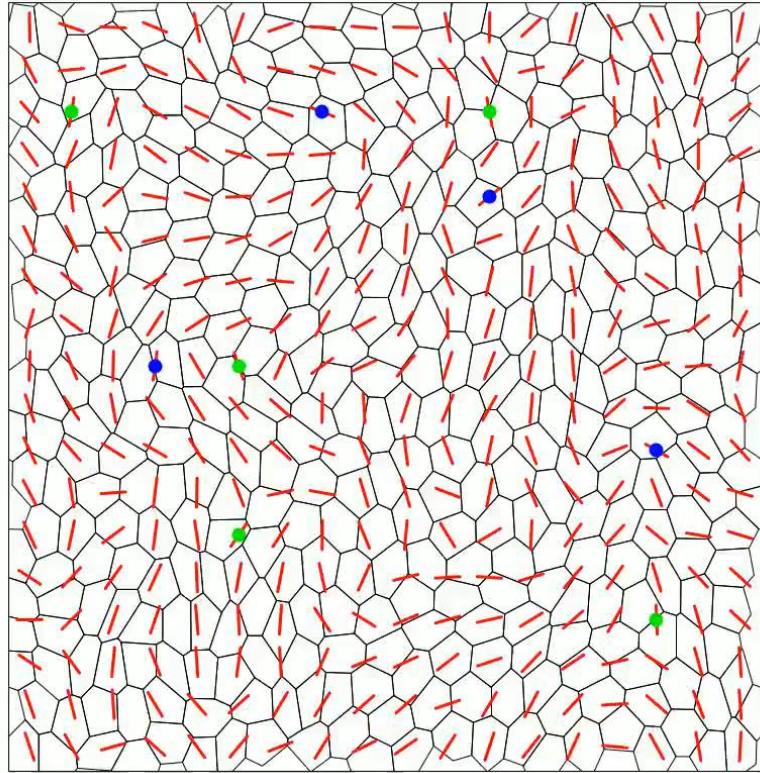
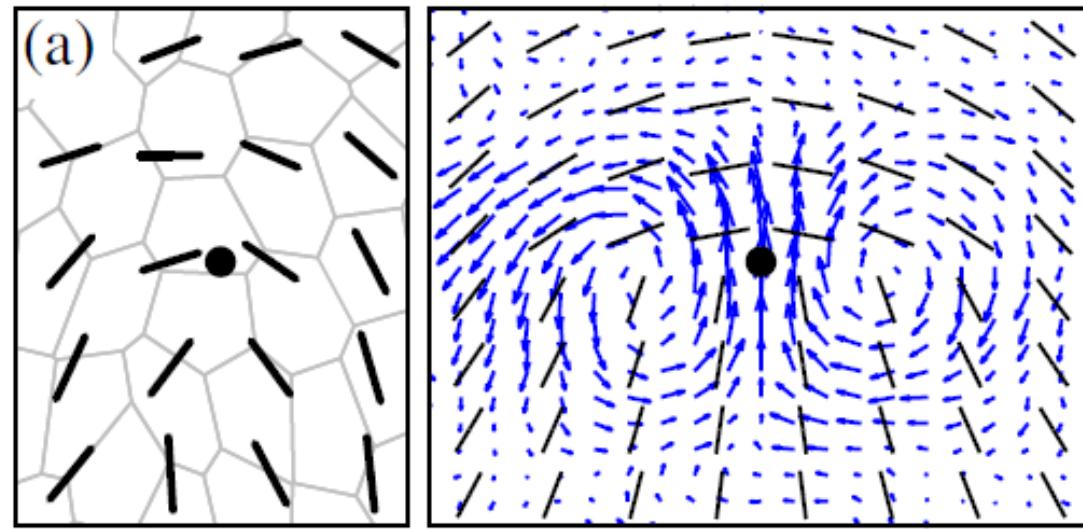
Cell is contractile

For the real experiment, see Balasubramaniam, L., Doostmohammadi, A., Saw, T.B. *et al.* Investigating the nature of active forces in tissues reveals how contractile cells can form extensible monolayers. *Nat. Mater.* **20**, 1156–1166 (2021).

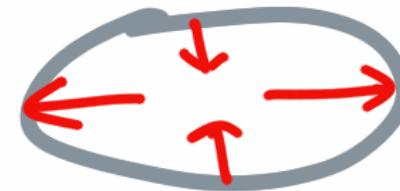


Expects +1/2 defect to move down

# Problem: $+1/2$ moves in opposite direction as expected



Expt:  $+1/2$  defects behave as if the cells are extensile:



*Q: Why the contractile (cellular level)  $\rightarrow$  extensile (tissue level) transition?*

# Resolution: cell-substrate interactions

Cell tissues can crawl on a substrate



For the real experiments, see,  
e.g., Petitjean, L. et al. Velocity  
Fields in a Collectively  
Migrating Epithelium  
Biophysical Journal, Volume 98,  
Issue 9, 1790 - 1800

# Resolution: cell-substrate interactions

Cell tissues can crawl on a substrate



Polar (directional) fluctuations at cellular level

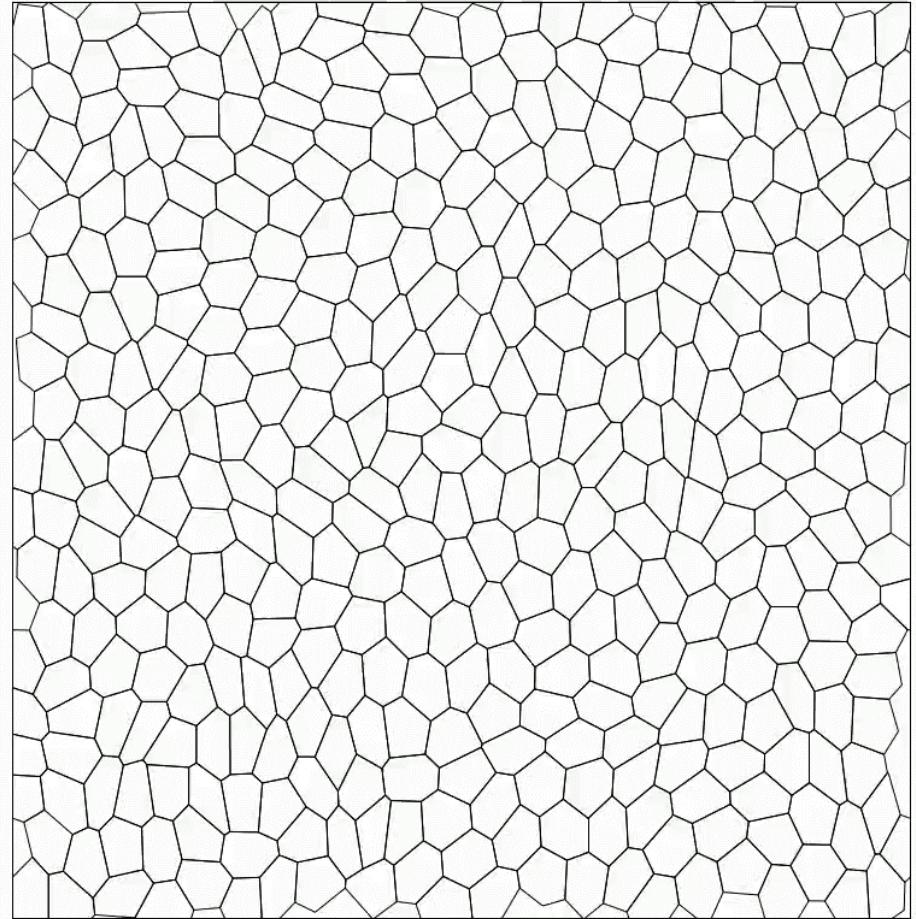


Generic extensile nematic behaviour at tissue level,  
even for contractile cells

[Killeen, Bertrand & Lee (2022) Phys Rev Lett;

See also Vafa, Bowick, Shraiman & Marchetti (2021) Soft Matt for a related perspective]

## 2. Universality of the tissue model



Q: Given how complicated biological systems are (e.g., cell tissues), how is meaningful modelling ever possible?

*A: Even if the microscopic dynamics is complicated, the underlying symmetry & conservation law may be simple*

*→ universal hydrodynamic equations of motion*

## Example: Navier-Stokes eqns for thermal fluids

- Incompressible limit for simplicity
- Hydrodynamic variable: velocity  $\vec{v}$
- Equation of motion (EOM):  
$$\partial_t \vec{v} = \rho^{-1} \vec{F}, \text{ with constraint } \nabla \cdot \vec{v} = 0$$
- What is the force field  $\vec{F}$ ?

# Symmetries

$$\text{EOM: } \partial_t \vec{v} = \rho^{-1} \vec{F}$$

- Temporal invariance:  $\mathbf{F}$  does not depend on time
- Translational invariance:  $\mathbf{F}$  does not depend on position  $\mathbf{r}$
- Rotational invariance:  $\mathbf{F}$  does not depend on a particular direction
- Chiral (parity) invariance:  $\mathbf{F}$  is not right-handed or left-handed
- Galilean invariance: EOM invariant under a boost

- To order  $O(\nu^2, \partial^2)$  [hydrodynamics], incompressible NS EOM:

$$\partial_t v_i + v_j \partial_j v_i = \nu \nabla^2 v_i + \underline{\rho^{-1} \partial_i p}$$

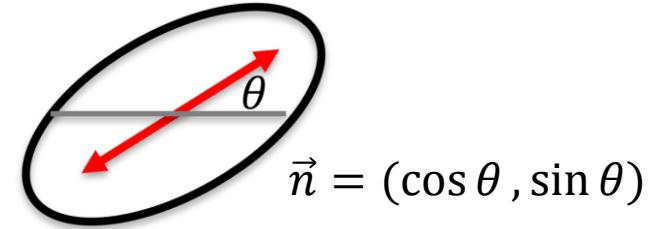
Lagrange multiplier to enforce the incomp. condition

# Modelling confluent tissues

- Hydrodynamic variables

- velocity  $\vec{v}$  + nematic field  $Q = S(2\vec{n} \otimes \vec{n} - I)$
  - $Q$  is a **symmetric, traceless**,  $2 \times 2$  matrix

$S$ : strength of nematic alignment



- Equations of motion (EOM):

$$\partial_t \vec{v} = A, \text{ with constraint } \nabla \cdot \vec{v} = 0$$

$$\partial_t Q = B, \text{ such that } B \text{ is } \text{symmetric \& traceless}$$

# Symmetries & constraints → universal EOM

- Same symmetries as in Navier-Stokes, except no Galilean invariance
- For small  $\vec{v}, Q$ , linear theory suffices:

$$0 = \mu \nabla^2 \mathbf{v} - \nabla P + \alpha \nabla \cdot \mathbf{Q} - \Gamma \mathbf{v} + \boldsymbol{\xi}$$

$$0 = \lambda [\nabla \mathbf{v} + (\nabla \mathbf{v})^T] + D \nabla^2 \mathbf{Q} - \eta \mathbf{Q} + \boldsymbol{\Omega}$$

Cell stresses on substrate → Polar fluctuations:

$$\langle \xi_i(t, \mathbf{r}) \rangle = 0,$$

$$\langle \xi_i(t, \mathbf{r}) \xi_j(t', \mathbf{r}') \rangle = 2\Delta \delta_{ij} \delta(t - t') \delta^2(\mathbf{r} - \mathbf{r}').$$

Cell-cell interactions → Nematic fluctuations:

$$\langle \Omega_{ij}(t, \mathbf{r}) \Omega_{kl}(t, \mathbf{r}') \rangle = 2\Delta_Q \delta(t - t') \delta^2(\mathbf{r} - \mathbf{r}') \epsilon_{ijkl}$$
$$\epsilon_{ijkl} = \frac{1}{2} (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} - \delta_{ij} \delta_{kl})$$

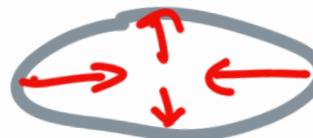
# Generic linear theory

$$0 = \mu \nabla^2 \mathbf{v} - \nabla P + \alpha \nabla \cdot \mathbf{Q} - \Gamma \mathbf{v} + \xi$$
$$0 = \lambda [\nabla \mathbf{v} + (\nabla \mathbf{v})^T] + D \nabla^2 \mathbf{Q} - \eta \mathbf{Q} + \Omega$$

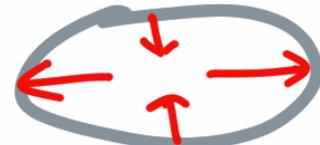
While we don't know what the parameters are, we expect:

- For stability reason:  $\mu, \Gamma, D, \eta > 0$
- $\lambda > 0$  because, e.g.,  $\partial_x v_x > 0$  should lead to an increasing  $Q_{xx}$
- Finally, what is  $\alpha$ ?
  - Remember NS,  $\partial_t \vec{v} = \dots + \nabla \cdot \sigma + \dots$ , where  $\sigma$  is the stress tensor. Hence  $\sigma \sim \alpha Q$
  - Consider  where  $Q = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

→ the system is contractile when  $\alpha > 0$



; extensile when  $\alpha < 0$



*Therefore, for MDCK cells, we expect that  $\alpha > 0$*

## So, why do we see extensile behaviour at the tissue level?

$$0 = \mu \nabla^2 \mathbf{v} - \nabla P + \alpha \nabla \cdot \mathbf{Q} - \Gamma \mathbf{v} + \boldsymbol{\xi}$$
$$0 = \lambda [\nabla \mathbf{v} + (\nabla \mathbf{v})^T] + D \nabla^2 \mathbf{Q} - \eta \mathbf{Q} + \boldsymbol{\Omega}$$

*Ans: the effective  $\alpha$  is 'renormalised' by other parameters in the system.*

Specifically, if we focus only on how the defects move by ignoring other dynamical features, we are effectively assuming that

$$\Gamma \vec{v} \approx \alpha_{\text{eff}} \nabla \cdot Q$$

Since  $\alpha_{\text{eff}} \propto \langle \vec{v} \cdot (\nabla \cdot Q) \rangle$ , we can calculate the sign of  $\alpha_{\text{eff}}$ :

$$\langle \mathbf{v} \cdot (\nabla \cdot \mathbf{Q}) \rangle = \int \frac{d^2 \mathbf{k}}{(2\pi)^2 (Dk^2 + \eta)} \left\{ -2\lambda \Delta k^2 G(k)^2 + \alpha \Delta_Q k^2 \left[ \frac{G(k)}{Dk^2 + \eta} - \frac{\alpha \lambda k^2 G(k)^2}{(Dk^2 + \eta)^2} \right] \right\}$$

where  $G(k) = \{\mu k^2 + \Gamma + [\lambda \alpha k^2 / (Dk^2 + \eta)]\}^{-1}$

## So, why do we see extensile behaviour at the tissue level?

$$0 = \mu \nabla^2 \mathbf{v} - \nabla P + \alpha \nabla \cdot \mathbf{Q} - \Gamma \mathbf{v} + \boldsymbol{\xi}$$

$$0 = \lambda [\nabla \mathbf{v} + (\nabla \mathbf{v})^T] + D \nabla^2 \mathbf{Q} - \eta \mathbf{Q} + \boldsymbol{\Omega}$$

*Ans: the effective  $\alpha$  is 'renormalised' by other parameters in the system.*

Specifically, if we focus only on how the defects move by ignoring other dynamical features, we are effectively assuming that

$$\Gamma \vec{v} \approx \alpha_{\text{eff}} \nabla \cdot Q$$

Since  $\alpha_{\text{eff}} \propto \langle \vec{v} \cdot (\nabla \cdot Q) \rangle$ , we can calculate the sign of  $\alpha_{\text{eff}}$ :

$$\langle \mathbf{v} \cdot (\nabla \cdot \mathbf{Q}) \rangle = \int \frac{d^2 \mathbf{k}}{(2\pi)^2 (Dk^2 + \eta)} \left\{ -2\lambda \frac{\Delta k^2 G(k)^2}{\text{Cell-substrate noise strength}} + \alpha \frac{\Delta_Q k^2}{\text{Cell contractility noise strength}} \left[ \frac{G(k)}{Dk^2 + \eta} - \frac{\alpha \lambda k^2 G(k)^2}{(Dk^2 + \eta)^2} \right] \right\}$$

where  $G(k) = \{\mu k^2 + \Gamma + [\lambda \alpha k^2 / (Dk^2 + \eta)]\}^{-1}$

## So, why do we see extensile behaviour at the tissue level?

$$0 = \mu \nabla^2 \mathbf{v} - \nabla P + \alpha \nabla \cdot \mathbf{Q} - \Gamma \mathbf{v} + \boldsymbol{\xi}$$

$$0 = \lambda [\nabla \mathbf{v} + (\nabla \mathbf{v})^T] + D \nabla^2 \mathbf{Q} - \eta \mathbf{Q} + \boldsymbol{\Omega}$$

*Ans: the effective  $\alpha$  is 'renormalised' by other parameters in the system.*

Specifically, if we focus only on how the defects move by ignoring other dynamical features, we are effectively assuming that

$$\Gamma \vec{v} \approx \alpha_{\text{eff}} \nabla \cdot Q$$

Since  $\alpha_{\text{eff}} \propto \langle \vec{v} \cdot (\nabla \cdot Q) \rangle$ , we can calculate the sign of  $\alpha_{\text{eff}}$ :

$$\langle \mathbf{v} \cdot (\nabla \cdot \mathbf{Q}) \rangle = \int \frac{d^2 \mathbf{k}}{(2\pi)^2 (Dk^2 + \eta)} \left\{ -2\lambda \Delta k^2 G(k)^2 + \alpha \Delta_Q k^2 \left[ \frac{G(k)}{Dk^2 + \eta} - \frac{\alpha \lambda k^2 G(k)^2}{(Dk^2 + \eta)^2} \right] \right\}$$

Always -

Always +

where  $G(k) = \{\mu k^2 + \Gamma + [\lambda \alpha k^2 / (Dk^2 + \eta)]\}^{-1}$

# Compressible tissues

- Hydrodynamic variables
  - Density  $\rho$  + velocity  $\vec{v}$  + nematic field  $Q$
- Equations of motion (EOM) from symmetry consideration

$$\partial_t \rho = -\rho_0 (\nabla \cdot \mathbf{v})$$

$$\partial_t \mathbf{v} = \mu_1 \nabla^2 \mathbf{v} + \mu_2 \nabla (\nabla \cdot \mathbf{v}) - c^2 \nabla \rho - \Gamma \mathbf{v} + \xi$$

$$\partial_t \mathbf{Q} = \lambda (\nabla \mathbf{v} + \nabla \mathbf{v}^T) + D \nabla^2 \mathbf{Q} - \eta \mathbf{Q} ,$$

- Same analysis  $\rightarrow$  same conclusion

# Tissues as active solids

- Hydrodynamic variables
  - Displacement field  $\vec{u}$  + nematic field  $Q$
- Equations of motion (EOM) from symmetry consideration

$$\Gamma \mathbf{v} = A \nabla^2 \mathbf{u} + B \nabla(\nabla \cdot \mathbf{u}) + \boldsymbol{\xi}$$

$$\eta \mathbf{Q} = C [\nabla \mathbf{u} + (\nabla \mathbf{u})^T] + \lambda [\nabla \mathbf{v} + (\nabla \mathbf{v})^T] + D \nabla^2 \mathbf{Q}$$

- Same analysis  $\rightarrow$  same conclusion

# Summary

Q: How come contractile cells can exhibit extensile active nematic behaviour at the tissue level?

A: Extensile dynamics comes from cell-substrate fluctuations

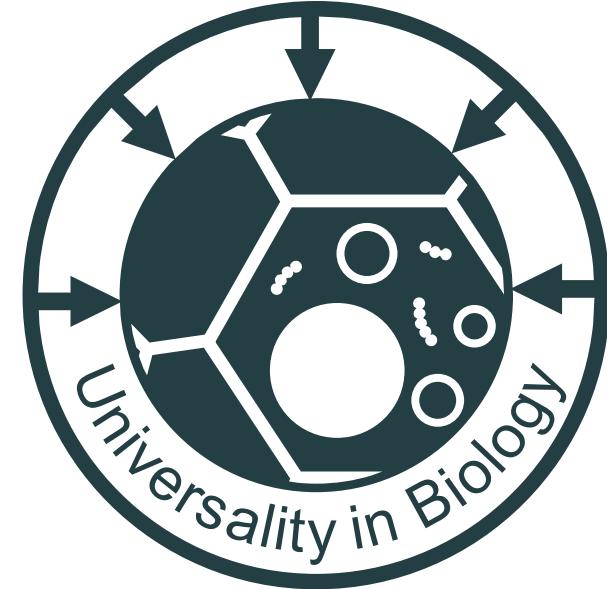
Demonstration using universal linear theory for confluent tissues

Similar conclusion applies for

- Compressible confluent tissues
- Confluent tissues in the solid state

*Ref: Killeen, Bertrand & Lee (2022) Polar Fluctuations Lead to Extensile Nematic Behavior in Confluent Tissues  
Phys Rev Lett 128, 078001*

# A broader perspective



1. Identify variables (fields) of interest
2. Symmetry consideration → universal model equations
3. Hydrodynamics → dramatic reduction in model parameters  
→ tractable model
4. Biophysical inputs → meaningful conclusions