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1.  ACTIVE FLUIDS – VICSEK MODEL 
AS AN EXAMPLE



The Vicsek model - algorithm

T Vicsek, A Czirók, E Ben-Jacob, I Cohen & O Shochet (1995) Novel Type of Phase 
Transition in a System of Self-Driven Particles Phys. Rev. Lett. 75 1226–9

Figure from F. Ginelli, arXiv:1511.01451



The Vicsek model – observations

T Vicsek, A Czirók, E Ben-Jacob, I Cohen & O Shochet (1995) Novel Type of Phase 
Transition in a System of Self-Driven Particles Phys. Rev. Lett. 75 1226–9

Homogeneous disordered (HD) Homogeneous ordered (HO)

Noise level



What’s the big deal?

1. A continuous symmetry (rotational symmetry) 
seems to be broken in 2D! 
– A violation of the Mermin-Wagner-Hohenberg

theorem at thermal equilibrium

2. Non-equilibrium dynamics is a crucial ingredient

3. It could be a new state of matter 
[Toner & Tu (1995) PRL; Toner & Tu (1998) PRE; Toner (2012) 
PRE; Mahault, Ginelli & Chaté (2019) PRL]
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2.  SYMMETRY-BASED HYDRODYNAMIC 
THEORY – TONER-TU EQUATIONS



Hydrodynamic variables and 
conservation laws?

• Hydrodynamic variables: density 𝜌 and 
momentum Ԧ𝑔

• Conservation law: Mass conservation



Symmetries

• What is the force F?

• Starting with symmetries:
– Temporal invariance: F does not depend on time

– Translational invariance: F does not depend on 
position r

– Rotational invariance: F does not depend on a 
particular direction

– Chiral (parity) invariance: F is not right-handed or left 
handed



Toner-Tu Equations of Motion (EOM)

Gaussian noise terms[Toner & Tu (1995) PRL; Toner & Tu (1998) PRE; 
Toner (2012) PRE]



A class of active fluid models
Vicsek model

Toner-Tu eqns
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3. SIMULATING ACTIVE FLUIDS – A 
LATTICE BOLTZMANN METHOD



A naïve question

• Can we not just do analytical calculations now 
that we have the hydrodynamic equations?

• Think good old fluid mechanics, most research 
is computational

Figure from Wikipedia



What can we learn from good old 
fluid mechanics?

• (Practically) no one does molecular dynamics 
simulation

• Computational fluid dynamics (CFD)

– Numerically solve Navier-Stokes equation (2nd

order PDE)

• Lattice Boltzmann methods (LBM)

– Forget about Navier-Stokes and get to the 
hydrodynamic behaviour from scratch



LBM over CFD

• Advantages

– Easy to parallelise

– Can handle complex geometries

• Disadvantages

– Hard to deal with high Mach numbers

– No consistent thermo-hydrodynamic scheme



LBM over CFD

• Advantages

– Easy to parallelise

– Can handle complex geometries

• Disadvantages

– Hard to deal with high Mach numbers

– No consistent thermo-hydrodynamic scheme
No need for such a scheme in active fluids



LBM – algorithm 

Each node has a collection of mass density distribution: 

𝑓𝑖 Ԧ𝑟, 𝑡 , 𝑖 = 0,… , 6, with orientation 𝑒𝑖
1. Streaming: 𝑓𝑖 Ԧ𝑟, 𝑡 are passed along their orientation 𝑒𝑖
2. Hydrodynamic variables are calculated:

𝜌 = σ𝑖=0
6 𝑓𝑖 ; 𝜌𝑢 = σ𝑖=0

6 𝑓𝑖𝑐𝑒𝑖
3.  Equilibrium mass distribution is calculated:

𝑓𝑖
𝑒𝑞

= 𝑤𝑖 1 + 4
𝑒𝑖 ∙ 𝑢

𝑐
+ 8

𝑒𝑖 ∙ 𝑢
2

𝑐2
− 2

𝑢 2

𝑐2

4.  Redistribute 𝑓𝑖 as 𝑓𝑖 ⟻ 𝑓𝑖 +
1

𝜏
𝑓𝑖
𝑒𝑞
− 𝑓𝑖

5.  Repeat from Step 1.

0



LBM for active fluids with contact 
inhibition of locomotion

Identical algorithm to LBM for passive fluids, BUT instead of using 
the equilibrium mass distribution 

𝑓𝑖
𝑒𝑞

= 𝑤𝑖 1 + 4
𝑒𝑖∙𝑢

𝑐
+ 8

𝑒𝑖∙𝑢
2

𝑐2
− 2

𝑢 2

𝑐2
,

we use the non-equilibrium steady-state distribution

𝑓𝑖
𝑠𝑠 = 𝑤𝑖 1 + 4

𝑒𝑖∙𝑢∗

𝑐
+ 8

𝑒𝑖∙𝑢∗
2

𝑐2
− 2

𝑢∗ 2

𝑐2
,

where                                      and

𝐴 corresponds to the level of density-induced slowing down



Why is the LBM an active fluid model?

Vicsek model

Toner-Tu eqns

Hydrodynamic 
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A lattice Boltzmann model



4.  NOVEL PHASE BEHAVIOUR – ACTIVE SYSTEMS 
WITH CONTACT INHIBITION OF LOCOMOTION

Level of density-induced 
locomotion impediment 



Homogeneous disordered (HD) phase

Colour wheel used to determine direction of velocity

D Nesbitt, G Pruessner & CFL 
Uncovering novel phase transitions in dry polar active fluids using a lattice Boltzmann 
method. E-print: arXiv:1902.00530



Banding (B) regime

Colour wheel used to determine direction of velocity



Homogeneous ordered (HO) phase

Colour wheel used to determine direction of velocity



Contact inhibition -> Reverse banding 

Colour wheel used to determine direction of velocity

See also: S Schnyder et al. (2017) Collective motion of cells crawling on a substrate: roles 
of cell shape and contact inhibition. Sci. Rep.; Geyer, David Martin, Julien Tailleur, and 
Denis Bartolo (2019) Freezing a Flock: Motility-Induced Phase Separation in Polar Active 
Liquids. PRX



Potential critical behaviour by fine-tuning two 
parameters

Surprising because critical order-disorder transition is not 
typically expected from compressible active fluids!



Around the critical point

Colour wheel used to determine direction of velocity



Known critical phenomena in polar 

active matter

1. Self-propelled particles with long-ranged metric 
alignment interactions [Ginelli & Chaté (2010) PRL]

2. Incompressible active fluids [Chen, Lee & Toner (2015)]

3. Active Lévy matter [Cairoli & Lee, arXiv:1904.08326]

4. Critical motility-induced phase separation 
[Partridge & Lee (2019) PRL; Siebert, et al. (2018) PRE; Caballero, 
Nardini & Cates (2018) J Stat Mech]

5. Self-propelled particles with velocity reversals 
and alignment interactions [Mahault, et al. (2018) PRL]



Our critical behaviour is different 

because
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[Partridge & Lee (2019) PRL; Siebert, et al. (2018) PRE; Caballero, 
Nardini & Cates (2018) J Stat Mech]

5. Self-propelled particles with velocity reversals 
and alignment interactions [Mahault, et al. (2018) PRL]



Can we understand the transitions 
analytically?

• At the linear level, our EOM are

• Around the moving phase, the system is unstable if 

ρ

α

> 0

where

E Bertin, M Droz & G Grégoire (2006) PRE



Summary

Ref: D Nesbitt, G Pruessner & CFL. Uncovering novel phase transitions in dry polar active 
fluids using a lattice Boltzmann method. E-print: arXiv:1902.00530

• We developed a Lattice 
Boltzmann model of 
active fluids with 
contact inhibition of 
locomotion

• We obtained the phase 
diagram with novel 
phase transitions 

1st order phase transitionsCritical transition (?)
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