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PhYSiCS ~ U niversal bEhaViOur + O(model specific details) *

*Asymptotic series: leading terms can be different



Mathematical definition of universality

Universality Class = Fixed point (FP) of renormalisation group

(RG) coarse graining procedure

Universal behaviour = Properties quantifiable by RG FP
Relevant terms in model equations = Terms that affect RG FP

Irrelevant terms = Terms that do not affect RG FP



Renormalisation group

A mathematical, coarse-graining procedure that incorporates

fluctuations to quantify how model parameters are modified

at larger length scales
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Categorisation: chemical elements vs. universality classes

Ising model: H = X.; iy Js;S;
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Why universality classes = gold?

* UCs are eternal

* |ts utility tends to go up with time
—Kardar-Parisi-Zhang model as an example
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Simple tricks to identify new UCs

1. Start with a model with new symmetries &
conservation laws

. Mean-field analysis

. Linear stability analysis

. Linear fluctuating hydrodynamics

o B W N

. Power counting (zeroth order RG) analysis



Colour wheel used to determine direction of velocity
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1. Start with a model with new symmetries &
conservation laws: Polar active fluids as an example



Polar active fluids

« Hydrodynamic variables: density p and momentum g

e Conservation law: Mass conservation

-
p—

Dp+V - g




: hp+V-g = 0
Symmetries ATV -8

e What is the force F?

e Starting with symmetries:
— Temporal invariance: F does not depend on time
— Translational invariance: F does not depend on position r
— Rotational invariance: F does not depend on a particular direction
— Chiral (parity) invariance: F is not right-handed or left-handed



Toner-Tu Equations of Motion (EOM) paussian nolse ferms

(Flr 1)) =0
(f(r.t) f(x' ) = 2Dd(x — v')5( — 1)

hp+V-g =10 \

g+ Mg -V)g+ MV -g)g+ Ve = Ulp.g)g — miVp — rag(g - Vp) + uVg+f+ -

Citation: "For seminal work on the theory
of flocking that marked the birth and
contributed greatly to the development of
the field of active matter."




Free energy

X Adapted from
QuantumbDiaries.org

2. Mean-field analysis



Mean-field analysis of polar active fluids

()fﬂ—{‘%— 0

g + Mg + \[BElg + BT =|Up. 8)|- B3 na8lelp) + IRE +K+ X
|

—(a+pg*+-)g

:> Spatiotemporally homogeneous solutions:

gl | 1. Ordered phase of systems with new SCL
—> New UC for the ordered phase?

2. Critical transition from disordered phase to a
new ordered phase
—> New UC for the critical behaviour?

Ordered phase Disordered phase

y— FOCUS Of today
0 a




MF = A new phase and a new critical UC



3. Linear stability analysis




Linear stability analysis

 MF analysis — two spatiotemporally homogeneous phases

Ordered phase ! Disordered phase

0 a



Linear stability: disordered phase _ orderedphase 1 Disordered phase

v

0 a
e Start with linearised TT EOM: Op+V-g=0, Og=—cog—mVip+mV'g
i i . t. — 1 _ t—1q -
. Consider homogeneous state with perturbations: ~ “\"*) = #o T epexp (st —ia x)
g(t,r) = €zexp (st —iq-r)
« Substitution into linearised EOM: sep+iq-E =0, s = —aof, — kiiqe, — 119’
* Re-write as an eigenvalue problem: s® = Mp-® b= (c, &)
0 _iq 0
Mp = | —ik1q —ag — pg? 0
0 0 (—f-’m - ;“JQQ) | P
» Solve for eigenvalues: a0 — g o [ —a
S=9\  aotud® o \/{o:.:]-l—;eqi}? — k1q? — _ K12 Always negative!
2 - 4 (a'ly)



Linear stability: disordered phase _ orderedphase 1 Disordered phase

0

o Start with linearised TT EOM: Op+V-g=0, Og=—aog—rVip+p Vg

- Consider homogeneous state with perturbations: ~ ~\%*) = 70 exp(st=ia-w)

g(t,r) = €zexp (st —iq-r)
e Substitution into linearised EOM: s, +iq-E =0,  s6, = —pfy — Kiige, — 1978,
* Re-write as an eigenvalue problem: s® = Mp-® b= (c, &) |
table
0 - earlv

4 - hlqu

» Solve for eigenvalues: { DisO

— g—0 — ‘
5= _C:E(]"‘j_lq'-z L \/{cx.:]-l—;aq"j‘}? .9 _ﬂfz Always negatlve!
— 5 T —_—



Linear stability: Ordered phase Ordered phase ! _Disordered phase

0 a
8“9 +V- g =0
g+ 2g-Vg = uV’g—kVp+alp)g—B9°g

Start with linearised TT EOM:

p(t,r) = po+e,exp(st—iq-r)
g(t.r) = goX+ €,exp (st —iq-r)

Consider homogeneous state with perturbations:

Substitution into linearised EOM

Re-write as an eigenvalue problem

a? a1\

Solve for eigenvalues: s= [ 7~ 2lao (EH 3 )} ¢ +0(@")  Always positive when aq is small

=

where  o(pg + 6p) = ag + a16p + O(6p?)



Linear stability analysis > more complicated phase diagram

Ordered phase ! Disordered phase
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Linearly  Linearly Linearly
stable  unstable stable
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Discontinuous transition

7\

Ordered Phase
phase separation

Disordered

phase

Similar to thermal phase separation:

Nucleation & Growth regime:
Linearly stable (metastable)
but not globally stable

Instability region:
Spinodal-decomposition

v

A J



Linear stability analysis > more complicated phase diagram

Ordered phase ! Disordered phase Phase separation - Banding regime
a
>« >4 G Grégoire & H Chaté (2004) PRL 92, 025702
Linearly  Linearly Linearly E Bertin, M Droz & G Grégoire (2006) PRE 74, 022101
stable unstable stable

\ 4

Discontinuous transition

7N\

Ordered Phase Disordered
phase separation phase

Colour wheel used to determine direction of velocity

v

D Nesbitt, G Pruessner CFL (2021) NJP 23, 043047



Linear stability analysis > more complicated phase diagram
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2

No so fast!

1A
Remember that in the ordered phase, the key eigenvalueis s = [ g~ 2|ag (th + a; )} q* + O(q")

bt

where a(po +dp) = ao + a1dp + O(3p*)

What if a4 is zero? E.g., collective motion speed goes down with density :

— a4 can be zero and so no instability as all!



An example

Ex: —a(p)=—A+p—p

Disordered (D)

Ordered
(O)




Recovery of ordered-disordered critical point

Phase diagram

= Colour wheel used to
determine direction of
velocity

Reverse-
banding

Banding

Density, p

D Nesbitt, G Pruessner & CFL (2021) NJP 23, 043047;
See also T Agranov et al (2024) NJP 26, 063006




Linear stability - An enriched phase diagram with a
new critical UC by fine tuning 2 parameters



Colour wheel used to determine direction of velocity

i

D Nesbitt, G Pruessner CFL (2021) NJP 23, 043047

4. Linear fluctuating hydrodynamics



Linear fluctuating hydrodynamics at criticality

Start with linearised TT EOM with noise:

Op+V-g=0, '{_}fg:—><— HIVc?p—i—,ulVEg +f

Fourier transformed spatiotemporally Op(wq.q) = / TS p(t )

g ) = [ (0
r

Re-write in matrix form

Find correlation functions between hydrodynamic fields to find

(plr, t)p(r', 1)) oc |r—r'|* (g(r,t) - g(r', 1)) o |r—1/[>
(p(r.t)p(r.t")) oc [t —t'|P=D/2 (g(r.t)-g(r,t')) o |t—t'|Z9/2



Linear fluctuating hydrodynamics - power-law
correlations among hydrodynamic fields at criticality



ugigigidig

5. Power counting (zeroth order RG) analysis



s it a new UC? r—e’ |ttt dp—= ey, g eXlg

. . 2 —d
- Remember the scaling exponents from the linear theory: z =2, x = 5

Use them to ascertain 1) the upper critical dimension, and 2) relevant nonlinear
terms

Here, upper critical dimension is 4, and relevant terms are
A3

Org+ Ai(g-V)g+ Xag(V-g) + EV(\g\Q) = —Blgl’g+--+f

No previous models have studied these nonlinearities before!



Power counting = critical model contains
nonlinearities never studied before
— indicative of a new UC



Summary: simple tricks to identify new UCs

Bs W N

New set of symmetries & conservation laws: polar active

fluids as an example

. Mean-field analysis = critical point

Linear stability analysis - enriched phase diagram
Linear fluctuating hydrodynamics — critical exponents
Power counting (zeroth order RG) analysis - upper

critical dimensions + relevant terms



Outlook

Now that we know where to
dig, how do we actually start

digging?

Gold standard:
Renormalisation group
analysis (Wilsonian, field-
theoretic, functional)




New UCs in polar active fluids

Flocking with quenched
disorder in 2D
Chen, Lee, Maitra & Toner

Flocking in 3D
Toner-Tu “flocking” UC Chen, Lee & Toner
Toner & Tu (1995) PRL (2020) PRL

(2022) PRL

Flocking with
guenched disorder
Toner, Guttenberg, &
Tu (2018) PRL

Critical behaviour
Chen, Toner & Lee
(2015) NJP

1995 2000

2005

Critical behaviour with
guenched disorder
Zinati, Besse, Tarjus,

Tissier (2022) PRE

2010

2015

Compressible
[ ] Incompressible
Infinitely compressible

3 UCs for multicritical
behaviour
Jentsch & Lee (2023) PRR

Vicsek’s flocking phase
Jentsch & Lee (2024) PRL

l

Critical behaviour
Miller & Toner (2024)
PRL

| |

Dynamics UC for flocking in 2D
Chen, Lee, Maitra & Toner
(2024) PRE

2020 2025
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