APS March Meeting, Boston March 8, 2019

Physics of active emulsions: Implications for stress granules

Chiu Fan Lee

Department of Bioengineering

Imperial College London

Phase separation vs. emulsions

Phase separation

A stable emulsion

Why an emulsion can be a good thing?

F Hinzpeter, U Gerland & F Tostevin (2016) Biophys. J.

Many small drops can be better than one big drop

Plan

- 1. Instabilities in emulsions
- 2. Non-equilibrium (active) phase separation
- 3. Implications for stress granule formation
- 4. Summary & Outlook

1. Instabilities in emulsions

Emulsions tend to be unstable

Differential buoyancy

Coagulation of drops

Fusion of drops

Big drops grow by sucking material from small drops at a distance

Sedimentation

Precipitation of nucleoli (Red) and Histone locus bodies (Green) in *Xenopus* germinal vesicles upon actin filament disruption

M Feric & CP Brangwynne (2013) Nature Cell Biol.

Flocculation

Processing bodies (Green) & P granules (Red) in *C. elegans* embryos

CM Gallo, E Munro, D Rasoloson, C Merritt, G Seydoux (2008) Dev. Biol.

Coalescence

TAR-DNA binding protein 43 (TDP-43) Ribonucleoprotein granules in neurons

PP Gopal, JJ Nirschl, E Klinman & ELF Holzbaurt (2017) PNAS

Ostwald ripening

Nucleoli in *C. elegans* embryo

J Berry, SC Weber, N Vaidya, M Haataja & CP Brangwynne (2015) PNAS

Focus on the late-stage / steady-state

Creaming / sedimentation

Gravity not important

Macromolecular crowding -> drops diffuse less as they grow

• Ostwald ripening

2. Solute diffuses between drops

Second law of thermodynamics

Second law of thermodynamics

2. Non-equilibrium (active) phase separation

Two hallmarks of living matter

Self-generated mechanical force
motility via ATP-driven molecular motors

- Driven chemical reactions
 - metabolism, ATP-driven phosphorylation)

Motility-induced phase separation [MIPS]

• Phase separation without attractive interactions

[J Tailleur & ME Cates (2008) Phys. Rev. Lett.; Y Fily & MC Marchetti (2012) Phys. Rev. Lett.; GS Redner, MF Hagan & A Baskaran (2013) Phys. Rev. Lett.]

B Partridge & CFL. arXiv:1810.06112

Ostwald-ripening in MIPS

1. Gibbs-Thomson relation: [Solute] outside a big drop < [Solute] outside a small drop

CFL (2017) Soft Matter

B Partridge & CFL. ArXiv:1810.06112

2. Active particles diffuse between drops

See also E Tjhung, C Nardini & ME Cates (2018) *Cluster Phases and Bubbly Phase Separation in Active Fluids: Reversal of the Ostwald Process.* Phys. Rev. X

Chemical reaction-controlled phase separation

Separating state (P) & Soluble state (S)

in out

$$\frac{\partial P_{\text{in,out}}}{\partial t} = D\nabla^2 P_{\text{in,out}} - kP_{\text{in,out}} + hS_{\text{in,out}},$$

$$\frac{\partial S_{\text{in,out}}}{\partial t} = D\nabla^2 S_{\text{in,out}} + kP_{\text{in,out}} - hS_{\text{in,out}},$$

$$SC \text{ Glotzer, EA Di Marzio \& M}_{\text{Muthukumar (1995) Phys. Rev. Lett}}$$

$$SC \text{ Glotzer, EA Di Marzio \& M}_{\text{Muthukumar (1995) Phys. Rev. Lett}}$$

$$D \text{ Zwicker, AA Hyman \& F Jülicher}_{(2015) Phys. Rev. E}$$

$$JD \text{ Wurtz \& CFL (2018) Phys. Rev. Lett}.$$

Review: CA Weber, D Zwicker, F \bullet Jülicher & CFL (2019) Rep. Prog. Phys.

F Jülicher

Phase separation with chemical reactions

Phase separation with chemical reactions

Phase separation with chemical reactions

Chemical reaction can stop coarsening

Spatial coordinate along the axis connecting two drop centres

CFL & JD Wurtz (2019) Journal of Physics D

Novel phase diagram

Stable, multi-drop system

JD Wurtz & CFL (2018) Phys. Rev. Lett.

3. Implications for stress granule formation

ATP depletion-triggered stress granule formation

Two assumptions

- 1. ATP-driven conversion(s) between phase separating form (P) and soluble form (S)
- 2. No SG at normal [ATP], but SG form at 50% [ATP]

- 1. ATP-driven conversion between phase separating form (P) and soluble form (S)
- 2. No SG at normal [ATP], but SG form at 50% [ATP]

Model C: 50% drop in [ATP] -> SGs with < 140nm in size

Insurance mechanism

	Cell	Car
Normal conditions	ATP consumption	Monthly payment
Stress conditions / Accident	SG formation for free	Insurance coverage

Insurance scheme: SG are tied to unpredictable environment

Summary

Biology inspires new physics

Physics allows us to do quantitative biology

- Driven phase separation
 - Chemical reaction can lead to a stable, multidrop system

- ATP depletion-triggered stress granule formation
 - ATP promotes solubility of SG constituents
 - Regulation by crossing phase boundary

CFL & JD Wurtz (2019) Novel physics arising from phase transitions in biology. J. Phys. D: Appl. Phys. 52, 023001

Imperial CollegeUniversality in biologyLondongroup

BBSRC bioscience for the future

Thanks:

Christoph Weber (MPI-PKS) David Zwicker (MPI-DS) Frank Jülicher (MPI-PKS)

Thank you for your attention!